InteliPro

Protection Relay for Parallel Applications

Comprehensive Guide

SW version 1.6, November 2014
Purpose of the InteliPro manuals

Installation and Operation Guide
The *Installation and Operation Guide* serves for the personnel, providing installation of the InteliPro unit. It contains wiring and setting instructions, needed for service and commissioning of the unit. It also contains introduction of the user interface and necessary procedures to perform setting and operating of the unit. Though InteliPro is very simple and intuitive for the operating personnel, we recommend keeping one copy of this manual available permanently at the installation site, where InteliPro unit is installed, to facilitate the necessary service and operation tasks.

Application Guide
The *Application Guide* serves for the designers and engineers, who process the necessary documentation and implementation procedures on the installation site, where InteliPro is installed. It contains detailed description of InteliPro functionalities and their practical application.

Communication Brochure
The *Communication Brochure* gives specific tips for wiring and set-up of communication interface of InteliPro and preparing it for local or remote communication. For more details about communication of ComAp products, see the IL-NT, IA-NT, IC-NT Communication Guide published on ComAp download centre.

Reference Guide
The *Reference Guide* contains library of setpoints, inputs and outputs functionalities and technical data for the purpose of detailed technical information. This information is referenced in the Installation and Operation Guide and Application Guide.
Installation and Operation Guide

InteliPro
Protection Relay for Parallel Applications

Installation and Operation Guide

SW version 1.6, November 2014
Table of contents

Introduction .. 3
Conformity declaration ... 3
Warnings .. 3
Installation data .. 4
 Unpacking the unit - what is in the package .. 4
 Mechanical mounting ... 4
 Terminal diagram ... 5
 Voltage and current inputs ... 5
 Binary inputs .. 9
 Binary outputs .. 12
 Analog inputs ... 12
 Tristate inputs ... 13
 Power supply ... 14
 Recommended wiring .. 15
 Configurability .. 15
 Options system .. 17
User Interface ... 18
 Control and navigation pushbuttons - basic operation ... 19
 Signalization LEDs .. 20
Introduction

Congratulations to your purchase of ComAp InteliPro protection relay unit! InteliPro is a microprocessor-based door-mounted protective device, providing a comprehensive set of protective and supplementary functionalities. ComAp unique modular concept of HW extension modules, SW options and full configurability allow perfect solution for most of the generator-to-mains parallel applications.

For the complete list of protective functions please refer to the chapter Protective functions in detail in the Application guide. The full configurability feature allows to cover advanced requirements for mains-decoupling (inter-tie, „G59/3”), as well as other advanced protection applications.

Conformity declaration

Following described machine complies with the appropriate basic safety and health requirement of the EC Low Voltage Directive No: 73/23 / EEC and EC Electromagnetic Compatibility Directive 89/336 / EEC based on its design and type, as brought into circulation by us.

The unit is certified to comply to the appropriate requirements of the standard DIN V VDE V 0126-1-1 (certificate ref. 44 207 11 398020, available upon request), with the following conditions:

The conformity with the Standard DIN V VDE V 0126-1-1, chapter 4.1/ 6.1, which is declared in the certificate 44 207 11 398020, requires the tolerance against one fault. In order to fulfil this functional safety requirement, a redundant architecture has to be built by the usage of two certified units. It has to be ensured that each of both units is connected to an output (relay) which is capable to induce opening of the operated contactor.

Warnings

Be aware that the relay outputs can change state during and after the unit setting (before the unit is used again ensure that the proper setting is done)!!!

Be aware that the devices connected to binary outputs of the unit may operate upon disconnection of power supply, measurement inputs and/or binary inputs!!!

!!! CAUTION !!!

Dangerous voltage

In no case touch the terminals of voltage measurement!

Adjust set points

All setpoints are pre-adjusted to their typical values. Before putting into operation, the setpoints must be checked and/or adjusted to the required values.
Installation may be done by qualified personnel only.
To avoid personal injury do not perform any action not specified in this guide!!!

NOTE:
ComAp believes that all information provided herein is correct and reliable and reserves the right to update at any time. ComAp does not assume any responsibility for its use unless otherwise expressly undertaken.

Installation data

Unpacking the unit - what is in the package

The package contains:

- InteliPro unit
- Relay Card CT2-REL2 plug-in module (plugged in the unit)
- Mounting holders
- Terminal blocks

NOTE:
The package does not contain any communication module nor any extension module. The required module should be ordered separately.

Mechanical mounting

The unit is to be mounted onto the switchboard door. Requested cutout size is 175x115mm. Use the screw holders delivered with the unit to fix the controller into the door as described on pictures below.
Terminal diagram

Voltage and current inputs

WARNING!
Risk of personal injury due to electric shock when manipulating with voltage terminals under voltage! Be sure the terminals are not under voltage before touching it.

WARNING!
Do not open secondary circuit of current transformers when primary circuit is closed!!! Open the primary circuit first!

Use 1.5 mm² cables for voltage connection and 2.5 mm² for current transformers connection.
Adjust nominal voltage, nominal current, CT ratio and PT ratio by appropriate setpoints in the **Basic Settings** group. Learn about how to view and change setpoints in the **User interface** chapter.

LOW VOLTAGE MEASUREMENT WIRING

![Diagram of low voltage measurement wiring](image_url)
HIGH VOLTAGE MEASUREMENT WIRING – TWO VOLTAGE TRANSFORMERS

CURRENT MEASUREMENT WIRING
To assure accurate measurement of the mains current, we recommend direct metallic connection between COM terminal of Mains Current measurement and the minus "-" terminal of the unit power supply. The potential difference between those two points must not overreach 10 V.
Complete measurement wiring scheme with voltage transformers

27, 59 Over/undervoltage
47 Voltage asymmetry
81H, 81L Over/underfrequency
50 Instantaneous overcurrent
51 Time overcurrent
46 Current asymmetry
50N, 51N Earth fault current
50GS, 51GS Ground surge current
32 Directional power
50BF Breaker failure protection
Dynamic grid support
QU protection
Phase sequence supervision
Auto fault reset
Maximum parallel time
Battery voltage protection
25 Sync-check
51V Time overcurrent with voltage restraint
59N Neutral voltage displacement
67 Directional overcurrent
78 Vector shift
78PS Pole slip
79 AC-reclosing relay
81R Rate of change of frequency
Complete measurement wiring scheme without voltage transformers
Binary inputs

The binary inputs of the unit are used to receive basic information about the installation site, its operational state and conditions. They can be also used for control of the unit operation, i.e. blocking of protective functions, induce tripping by binary signals or providing remote fault reset signal.

To wire the binary inputs correctly, please use the following picture. The black line is to be wired to the unit, the blue line indicates internal arrangement of the unit. Use min. 1 mm² cables for wiring of binary inputs.

NOTE:
The name and function or alarm type for each binary input have to be assigned during the configuration.
Binary outputs

Use min. 1 mm² cables for wiring of binary outputs. Use external relays as indicated on the schematic below for all outputs except those where low-current loads are connected (signalization etc.).

NOTE:
The function of each output has to be assigned during the **configuration**.

CAUTION!
Use suppression diodes on all relays and other inductive loads!

Wiring of binary outputs

Analog inputs

The analog inputs are designed for resistive automotive type sensors like VDO or DATCON. The sensors are connected either by one wire (the second pole is sensor body) or by two wires.

- In case of grounded sensors connect the AI COM terminal to the engine body as near from the sensors as possible.
- In case of isolated sensors connect the AI COM terminal to the negative power supply terminal of the controller as well as the opposite poles of the sensors.
NOTE:
The fail sensor alarm is issued if the measured resistance is smaller than one half of the first (lowest) point of the sensor curve characteristic or is greater than 112.5% of the last (greatest) point of the sensor curve characteristic.

WIRING OF ANALOG INPUTS - GROUNDED SENSORS

WIRING OF ANALOG INPUTS - ISOLATED SENSORS

Tristate inputs
Analog inputs can be used also as binary or tristate, i.e. for contact sensors without or with circuit check. The threshold level is 750Ω. In case of tristate, values lower than 10Ω and values over 2400Ω are evaluated as sensor failure (short or open circuit).
Wiring of Analog Inputs - Used as Binary or Tristate

Note:
The name, sensor characteristic and alarm types for each analog input have to be assigned during the configuration.

Relay Card CT2-REL2 plug-in module

As a default, the unit is supplied with the plug-in module Relay Card CT2-REL2 plugged in the unit. The module provides:

- 2 relay outputs allowing voltage-free output contacts
- 5 A current measurement input
- 50 mA current measurement input

It is possible to operate the unit also without the Relay Card CT2-REL2 if none of the above mentioned functions is requested for the application. In that case, it can be removed and the plug-in slot can be used for inserting another plug-in expansion module, e.g. IC-NT CT-BIO7 to expand the configurability of binary inputs/outputs.

Relay outputs
The relays on the Relay Card CT2-REL2 module provide a set of 2 NO contacts with possibility of configuration of any logical binary output. By default, the functions !Comm Trp and !Bak Comm Trp are configured to those outputs. To change the configuration of the relay outputs function, use the configuration tool in LiteEdit PC software.

Current inputs
The module Relay Card CT2-REL2 provides two current inputs for purpose of the Earth Fault Current and Ground Surge Current evaluation. When wiring the current inputs, please make sure that the wires are connected to the correct current measurement input to prevent damage of the 50 mA input by excessive current!
Power supply

The unit is designed for 8 - 36 VDC (typically 24V or 12V battery, battery charger or inverter) power supply. Use secured power supply voltage to assure operation of the InteliPro protection relay even during power supply outages! In case that no suitable DC supply circuits are available on-site, we recommend to use an appropriate inverter AC to 24 VDC. In case of need, ask ComAp technical support at support@comap.cz for recommendations.

Recommended wiring

In the diagram below, see the typical wiring of the InteliPro unit inputs and outputs. The wiring is to be considered as an example for the default configuration and operation mode with 1 common trip output. The relay contacts of Relay Card CT2-REL2 module can be reconfigured to Trip 1 and Trip 2 outputs in case of operation with 2 trip outputs, as well as any inputs and outputs can be reconfigured to the particular needs of the application.

An OFF coil of a circuit breaker is to be wired to terminals RE11 and RE14 or to terminals RE21 and RE24 on extension module.
Configurability

One of the key features of InteliPro unit is high level of flexibility and adaptability of the system to the particular application. The way how to achieve this is the configuration. Use **LiteEdit** PC software to read the configuration from the controller or disk, view it, modify it and write the configuration to controller or disk. To work with InteliPro, LiteEdit version 4.6.8 or higher is necessary. Visit www.comap.cz for download or update of this PC application and its manuals.

The firmware contains large number of binary inputs and outputs for different functions. Those that are required by operation of a particular application can be mapped to the physical terminals of the unit. One of main tasks of the configuration is this mapping of "logical" firmware input and output signals to the "physical" hardware inputs and outputs.

Configuration parts:

1. Mapping of logical binary inputs (functions) assigning alarms to physical binary input terminals
2. Assigning the "normally closed" or "normally opened" functionality to the inputs
3. Mapping of logical binary outputs (functions) to physical binary output terminals
4. Assigning sensor characteristics and alarms to analog inputs
5. Assigning control values and output characteristics to analog outputs
6. Selecting of peripheral modules which are connected to the controller and doing the same as above for them
7. Changing language of the unit texts

NOTE:

Some of the logical binary outputs provide also the reversed functionality. Those LBOs are marked with exclamation mark "!" as the first character of their name.

See more in the **Introduction** or **Library of binary output functions** chapters.

The unit is delivered with a **default configuration, which should fit to most standard applications.** This default configuration can be changed only using PC and **LiteEdit** software. See LiteEdit documentation for details.
NOTE:
You need one of communication modules to connect the controller to a PC with LiteEdit. There is a special easy removable service module for cases, where there is no communication module permanently attached.

Once the configuration is modified, it can be stored in a file for later usage with another controller or for backup purposes. The file is called archive and has file extension "aic". An archive contains full image of the controller at the moment of saving (if the controller is online to the PC) except firmware, i.e. besides configuration there are also current adjustment of all setpoints, all measured values, copy of history log and copy of alarm list.

The archive can be simply used for cloning of InteliPro units, which means preparing units with identical configuration and settings.

CAUTION!
The firmware of this version is compatible only with the archive version 1.4. It is not possible to use for instance the archive version 1.3.

System of optional functions
The unit offers wide range of protective functionalities. To allow flexibility of the protective functions at the particular application, some of the features are provided as SW options. These functions are unlocked by a software dongle, delivered by ComAp or its approved distributors. The SW dongle is a unique number generated according to the serial number of the unit and the selected protective functions. The functions are referred by their ANSI numbers, according to the following table:

<table>
<thead>
<tr>
<th>ANSI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-25</td>
<td>Synch Check</td>
</tr>
<tr>
<td>IP-51V</td>
<td>Time over current with voltage control</td>
</tr>
<tr>
<td>IP-59N</td>
<td>Neutral voltage displacement</td>
</tr>
<tr>
<td>IP-67</td>
<td>Directional overcurrent</td>
</tr>
<tr>
<td>IP-78</td>
<td>Vector shift</td>
</tr>
<tr>
<td>IP-78PS</td>
<td>Pole Slip</td>
</tr>
<tr>
<td>IP-79</td>
<td>AC reclosing relay</td>
</tr>
<tr>
<td>IP-81R</td>
<td>Rate of change of frequency + rocof filter</td>
</tr>
</tbody>
</table>

InteliPro, SW version 1.6, ©ComAp – November 2014
InteliPro 1.6 Comprehensive Guide
The appropriate selection of InteliPro optional functions is to be marked on the rear side of the unit:

<table>
<thead>
<tr>
<th>Function Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPro-25</td>
</tr>
<tr>
<td>IPro-51V</td>
</tr>
<tr>
<td>IPro-59N</td>
</tr>
<tr>
<td>IPro-67</td>
</tr>
<tr>
<td>IPro-78</td>
</tr>
<tr>
<td>IPro-78PS</td>
</tr>
<tr>
<td>IPro-79</td>
</tr>
<tr>
<td>IPro-81R</td>
</tr>
</tbody>
</table>

For unlocking the desired functions or changing those functions that are already unlocked, contact your sales person for the appropriate SW dongle. The following information will be needed:

- Serial number of the unit
- List of requested functions to unlock

Entering the SW dongle:
Once received the appropriate SW dongle relative to the unit serial number, go to the setpoint **General: IPro-SWKey** and enter the numerical string, which you have obtained. Though it is more convenient to enter the SW dongle via LiteEdit PC software, it is also possible to enter it through the controller screen and pushbuttons.
User Interface

Control and navigation pushbuttons - basic operation

General operation using buttons:

- In the measurement screens, use the arrow buttons to browse through the measured values as displayed on the graphical display. See the chapter Measurement screens to get the basic orientation.

- Use the button to cycle through display of measurement screens, adjust setpoints and view the history table. For setpoints change, see the following chapter.

- To enter the init screen, change language or read the list of unlocked InteliPro options, push the and buttons at the same time. Together with the init screen display, the unit performs lamp test by simultaneous blinking of all LEDs.

- For confirmation of change any setpoint, use the button.

Passwords

InteliPro provides 3 levels of password protection. The system of passwords allows to assign different levels of password to different personnel groups. After entering of the password of 1st or 2nd level, it is possible to change that password or the password of any of the lower levels. The password for the 1st (highest) level is set to zero “0” by default. Contact ComAp technical support in case that the password of your unit is lost and needs to be re-issued.

Entering the password

The password must be entered prior adjusting setpoints that are password-protected. Password is located in the first group of setpoints and the way how to enter or change password is similar to change of setpoints.
Signalization LEDs

There are 5 LEDs for indication of InteliPro status with the meaning indicated in the table below:

<table>
<thead>
<tr>
<th>LED</th>
<th>state</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>red</td>
<td>-</td>
</tr>
<tr>
<td>Status</td>
<td>green</td>
<td>-</td>
</tr>
<tr>
<td>CB1</td>
<td>green</td>
<td>ON</td>
</tr>
<tr>
<td>CB1</td>
<td>green</td>
<td>OFF</td>
</tr>
<tr>
<td>CB2</td>
<td>green</td>
<td>ON</td>
</tr>
<tr>
<td>CB2</td>
<td>green</td>
<td>OFF</td>
</tr>
<tr>
<td>TRIP</td>
<td>red</td>
<td>ON</td>
</tr>
<tr>
<td>TRIP</td>
<td>red</td>
<td>blinking</td>
</tr>
<tr>
<td>TRIP</td>
<td>red</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Status LED signalization:

<table>
<thead>
<tr>
<th>red</th>
<th>green</th>
<th>state</th>
<th>Display reading</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Status</td>
<td>No power supply or PowerFail occurred</td>
<td></td>
</tr>
<tr>
<td>blink</td>
<td>OFF</td>
<td>Status</td>
<td>"Program Corrupted" or "System Error" or "System Error + Wrong config format" Transient SW failure → Contact technical support with information about the display message</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Status</td>
<td>Normal reading Wrong checksum of parameters → Check the complete settings of your unit and change any one of the parameters. If the state persists, contact technical support</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Status</td>
<td>Normal reading Wrong checksum of "R" parameters → Contact technical support</td>
<td></td>
</tr>
<tr>
<td>blink</td>
<td>ON</td>
<td>Status</td>
<td>Normal reading Watchdog reset was performed → Save the archive, contact technical support and attach the archive</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Status</td>
<td>Normal reading Normal operation of the unit</td>
<td></td>
</tr>
<tr>
<td>blink</td>
<td>blink</td>
<td>Status</td>
<td>Not initialized Unit HW failure → Request repair of the unit</td>
<td></td>
</tr>
</tbody>
</table>
InteliPro

Protection Relay for Parallel Applications

Application Guide

SW version 1.6, November 2014
Table of contents

Table of contents ... 1
Introduction .. 3
 Operation mode with 1 common trip output ... 3
 Operation mode with 2 trip outputs ... 4
 Priority switching .. 4
 TRIP and Fault Reset description .. 5
 TRIP ... 5
 Fault reset ... 5
 Interconnection to IG/IS-NT controllers ... 5
 Shared peripheries ... 6
 Remote opening / closing of circuit breakers ... 7
Protective functions .. 8
 The concept .. 8
 How to set up trip outputs .. 8
 How to set up blocking conditions ... 8
Protective functions in detail ... 9
 Overvoltage, Undervoltage (ANSI 59, 27) ... 9
 Overfrequency, Underfrequency (ANSI 81 H, L) .. 10
 Voltage unbalance (ANSI 47) ... 11
 Floating average overvoltage ... 11
 "Loss of mains" protections .. 11
 Vector shift (ANSI 78) .. 11
 Rate Of Change Of Frequency (df/dt, ROCOF, ANSI 81R) .. 12
 Overcurrent: definite-time, IDMT and with voltage control .. 13
 Earth Fault Current (ANSI 50N, ANSI 51N) .. 17
 Ground Surge Current (ANSI 50GS, ANSI 51GS) .. 17
 Current unbalance (ANSI 46) .. 17
 Directional overcurrent (DOC, ANSI 67) ... 18
 Neutral Voltage Displacement (NVD, ANSI 59N) ... 18
 Directional power (ANSI 32) ... 19
 Power Factor (ANSI 55) ... 19
 Synchro check (ANSI 25) ... 19
 AC reclosing (ANSI 79) ... 19
 Pole Slip (ANSI 78PS) .. 19
 Dynamic grid support .. 20
 QU (undervoltage dependent directional reactive power) protection 20
Introduction

InteliPro protection relay provides high range of flexibility to the users and their applications. In the most common cases, one output for tripping is used. In this case, InteliPro provides the common trip output, which represents logical “OR” of all activated and pre-set protective functions of the unit. If needed, InteliPro also allows two circuit breakers to operate, where some protective functions are assigned to one of them and other functions to the other. In such case, the circuit breakers can provide backup for each other, so that in “fail to trip” situation the other circuit breaker opens under pre-set conditions to clear the first breaker failure.

Furthermore, InteliPro provides two independent blocking inputs and complex blocking conditions, which can be used to activate or deactivate any of the protective functions of the unit. All necessary inputs and outputs can be freely configured to any input or output of the unit. In case of outputs, any of the 2 relay outputs or 8 open-collector outputs can be selected.

In case that any of the configured protective functions is activated, InteliPro relay provides a Trip signal. This signal is provided in both positive and negative logic in order to follow the requirements of the application:

- Due to increased safety requirements, some protective relays require to use negative logic, assuring that loss off power supply always causes the relay to trip. I.e. the relay contacts are used, with fault-free position maintained in energized state. In case of power supply fail, the unit goes to “fault” indication position. The outputs using negative logic are marked with exclamation mark “!” as the first character of their name.
- In some applications, the negative logic is not a required functionality. The function of opening the circuit breaker in case of loss of power supply is not accepted as a safety point and the safety is assured by different means e.g. in the superior system or within the protection relays intertripping scheme. In such case, the outputs with positive logic (without the exclamation mark) can be used to signal the detected failure state.

In any case, it must be assured that the InteliPro relay has full control at opening the appropriate breaker by the trip command - i.e. in case of Trip state the unit receives the appropriate CB feedback, confirming its open position. The feedback must respond within preset time to the trip command. A special attention should be paid to opening of motorized circuit breakers, as it could take more than 2s on some types. In such cases it is necessary to use undervoltage coil for fast opening.

Operation mode with 1 common trip output

- This is the essential mode of operation of the protection relay InteliPro. In this case, CB1 circuit breaker or contactor is considered as the main connection device, protected by InteliPro. In the ComAp gen-set controllers, this breaker is called ”Mains Circuit Breaker” = MCB.
- Second circuit breaker or contactor is not expected in the protection scheme, but there is still possibility to use the “backup tripping” signal from InteliPro relay to operate any backup device, if present on the installation. As such device may be considered another circuit breaker in the line of mains-connection, CB1 undervoltage coil, or any device which serves as a backup in case of the CB1 fail.
- The Comm Trp (or !Comm Trp) output is used as the main signal to open the CB1 circuit breaker. InteliPro expects that in such case, the CB1 Feedback input deactivates as a result of the protection trip. Adjustable delay can be set by the setpoint General: BackupTrp Del, to provide backup functionality for the CB1 breaker. If the feedback does not deactivate within this delay, the output Bak Comm Trp activates (or !Bak Comm Trp deactivates) immediately.
- Any function, which is activated and not blocked within the InteliPro unit activates the Comm Trp signal. Use the blocking conditions to control which protective functions will be used under the appropriate circumstances.
Operation mode with 2 trip outputs

- In some cases, the protection relay is requested to operate two circuit breakers. Usually, one of them is considered as the main circuit breaker, with most of the functions configured to operate this circuit breaker. As mentioned above, this breaker often corresponds to the "Mains Circuit Breaker" = MCB as used in ComAp controllers.
- The second circuit breaker can be from the point of view of the protection relay considered as a supplementary contactor in the power connection scheme. It can provide back-up functionality in case that the CB1 does not trip on command, or can be operated individually by selected protective functions. It can, but does not necessarily have to correspond to the "Generator Circuit breaker" = GCB as used in the ComAp controllers applications. In such case, e.g. NVD function is the most often case, when GCB (CB2) is tripped instead of MCB (CB1).
- In case that 2 circuit breakers are controlled by InteliPro unit, it is possible to freely assign, swap or configure the functionalities of both circuit breakers and provide appropriate back-up function of the breakers by the "Priority switching" functionality. It is not practical to use the Comm Trp output in this case. To distinguish between the 2 breakers, outputs Trp 1 and Trp 2 are available.
- For each protective function in InteliPro, it is possible to assign either Trip 1 or Trip 2 function, none of them, or both. The setpoint xxx Trp BO (e.g. I>: I Trp BO) in the appropriate group of protection setting is used for this assignment. By this setting, the output Trp 1 or 2 will then contain only those functions which were assigned to it.
- Trip 1 output is internally interconnected with CB1 operation, i.e. in case of activation of Trp 1, the CB1 Feedback is expected to be deactivated. The same applies for Trip 2: in case of activation of Trp 2, the CB2 Feedback is expected to be deactivated.

Priority switching

Priority switching feature allows using the circuit breakers CB1 and CB2 as a backup to the other one. To clearly understand this, it is necessary first to understand the possibility of assignment of any of the operated two circuit breakers to the appropriate protective function (see the chapter Operation mode with 2 trip outputs).

Though both of the breakers are equivalent and fully assignable within the InteliPro relay, the most common application for generator-to-mains connection is as follows:

- CB1 is considered as the main contactor of the generator to the mains. In ComAp products, this breaker is called "Mains Circuit Breaker" = MCB.
- CB2 is considered as a supplementary contactor on the power connection between generator and mains. There can be specific protection functions assigned to trip CB2 only and it can provide back-up functionality to the CB1. It can, but does not necessarily have to correspond to the "Generator Circuit breaker" = GCB as used in the ComAp products.
- Please note, that as both circuit breakers are equivalent, it is also possible to assign CB2 as the main one and CB1 as the backup, or provide a symmetrical backup of both breakers "one to each other".

Depending on setting the setpoint General: Prio Switching, the following backup function is provided:

- **DISABLED** - no CB backup is provided
- **CB1 -> CB2** - CB1 is considered as the primary contactor. If the CB1 Feedback is not deactivated within preset period after Trp 1, the output Trp 2 is issued immediately to trip CB2 as backup. Bak Trp 1 is issued at the same time.
- **CB1 <-> CB2** - both CBs provide a backup switching for each other. If the CB1 Feedback doesn't deactivate in preset period, CB2 is tripped, if the CB2 Feedback doesn't come in preset period, CB1 is tripped.
TRIP and Fault Reset description

TRIP

TRIP may be considered as event or status of the unit:

TRIP event:
- Starts in the moment of terminating the count-down of any protective function with delay, or in the moment of activation of any immediate protective function.
- As a result of the trip event, are e.g. the following consequences:
 - Immediate activation of output Comm Trp and deactivation of output !Comm Trp
 - LED TRIP goes to red
 - History record is created

TRIP status:
- Starts at the moment of TRIP event
- During this status, the Comm Trp and !Comm Trp outputs keep in the fault position
- During this status, it is not possible to perform Fault reset
- TRIP status is active until a successful Fault reset. This may not be done before all measured and evaluated values are within preset limits.
- If during the TRIP status, caused by some value, another value overreached its limits for TRIP evaluation, this second overreach is not considered as TRIP. It does not cause a second TRIP event. However, as a consequence of this, the TRIP duration may be prolonged until the moment when both (all) values are within limits.

Fault reset

Fault reset is an event, caused by either of the following reasons:

- Fault reset button is pressed
- Input F.R. Button is activated
- Automatic fault reset is performed according to the setting of General: Auto FR setpoint.
- By activation or deactivation of binary input Block 1 or Block 2.

The abovementioned reasons are a trigger to provide Fault reset, however, it is successfully done only in case that the TRIP status is activated and all evaluated values have returned back into limits. If the TRIP status is not activated, or it is activated, but any of the values is still out of limits, Fault reset is not done and any of the mentioned triggers is forgotten. I.e., the unit may not be „provisionally“ fault-reset.

By a successful Fault reset, the TRIP status is terminated.

Interconnection to IG/IS-NT controllers

It is possible to interconnect InteliPro unit with IG-NT and IS-NT controllers on the CAN2 bus. Refer to the chapter CAN bus connection for the details on wiring the CAN2 bus. The most frequent applications of this function are as follows:

- Transmitting analog values like active and reactive power, measured voltage or current from the point of connection to the mains via InteliPro to the NT controllers. Technology of shared peripherals is used to transmit up to 4 analog values. The transmitted values can then be processed by the controllers to allow the requested operation of the gen-sets (e.g. load and PF control).
- Transmitting binary signal from the point of connection to the grid to the controllers. Technology of shared peripherals is used to transmit up to 8 binary signals. Typically, the state of breaker feedbacks or other InteliPro binary inputs can be used to provide inputs to the gen-set control processes. Another application is to use InteliPro as a communication interface that allows e.g. setting the remote control switches via remote communication. The state of the switches can then be transferred to the controllers to reduce power to the value requested by the external system or provide other signals relevant to the site operation.
- Remote monitoring of the complete site including the InteliPro mains protection and gen-set controllers through the CAN2 bus and ComAp standard monitoring modules and tools (I-LB+, InternetBridge-NT, InteliMonitor).

Shared peripheries

The function is compatible with IG/IS-NT controllers. CAN2 interconnection between the gen-set controllers and InteliPro is necessary to allow this feature. Use the LiteEdit configuration window to configure the appropriate binary and analog values to be transmitted from InteliPro via the CAN2 communication. In the Configuration window, click the button. The following window opens:

Using the "Module address" selection box to adjust the address of the shared peripheries module and avoid collision with other module already present on CAN2 bus. Click on the appropriate Binary output or Analog output in the list to set up the value to be transmitted via CAN2 bus to the gen-set controllers. The transmitted values are received by the IG/IS-NT controllers connected via the CAN2 bus. See more about configuring shared peripheries (Shared and Internal virtual I/O periphery and PLC) in IGS-NT-Application guide.

The shared binary and analog outputs can be used for communicating out the binary statuses of CBs, trips of the particular protective functions or transmitting the value of mains import in kW, kVAR or kVA and further processing e.g. for the gen-set control or visualization of the site.
Remote opening / closing of circuit breakers

InteliPro offers the users the possibility to manually control – open / close a circuit breaker. The breaker can operated either by binary input or via PC software - LiteEdit and InteliMonitor allow the user to click either on “Open” or “Close” button and InteliPro will issue a signal (activate binary output) to open or close the circuit breaker. There are two dedicated binary inputs – CB1 open and CB1 close; for detailed description see Library of binary inputs and three binary outputs – CB1 ON Man, CB1 OFF Man, CB1 UV Coil to operate the circuit breaker; for detailed description see the Library of binary outputs. For description of binary inputs.

The buttons are password protected and are enabled only upon entering correct password. Opening of the circuit breaker is possible under any conditions, closing only if all of the following conditions are fulfilled:

- The circuit breaker has been manually opened before
- InteliPro is not in TRIP state
- All mains parameters are within limits

It may happen that after opening the breaker the unit is reset or some changes in configuration are done. It is important that even if all mains parameters are within limits the breaker remains open because it was manually opened and it is a wanted state. The breaker can close only after the input CB1 close is active or if the button in InteliMonitor or LiteEdit is pressed. There is no automatic operation of the controller if configuration is change towards remote / manual operation.

There will be an event created in the Alarm list and History when the circuit breaker is manually opened.
Protective functions

The concept
InteliPro is a compact electronic protective relay, providing complete list of protective functions. Each of the functions works as an autonomous protective stage, with its independent activation, setting of the limits and assigning of the Trp 1 and/or Trp 2 output and Block 1 and/or Block 2 input. Besides that, each activated protective function activates the Comm Trp output as described above. These settings are done in the setpoints menu, using the appropriate group of setpoints, assigned to its function. E.g. setting of overcurrent limit, delay, and trip outputs is done in the setpoint group I>.

How to set up trip outputs
To assign the appropriate trip outputs, which are operated by a particular protective stage, find the setpoint group, which contains the setting of this protective stage. E.g. for overcurrent, go to the setpoint group I>. In the setpoint group find the setpoint xxx Trp BO, where “xxx” is the abbreviation of the protective stage. It is possible to use the following setting:
- None: neither Trp 1 nor Trp 2 is activated in case of this protective stage trip. In such case, only the Comm Trp output contains information about trip by this protection stage.
- Trp 1: binary output Trp 1 is activated in case of this protection stage trip.
- Trp 2: binary output Trp 2 is activated in case of this protection stage trip.
- Trp 1+2: both binary output Trp 1 and Trp 2 are activated in case of this protection stage trip.
- In all cases, the Comm Trp output contains information about trip from all activated protection stages.

How to set up blocking conditions
New version of Lite Edit allows setting of InteliPro blocking conditions for individual functions in “Blocking conditions” matrix. It provides simple enabling and disabling of functions either in all cases or only under specific conditions. It also provides option of blocking particular functions by binary input or blocking if not in parallel to mains operation.

IMPORTANT
This feature replaces the selection of disable / enable option in InteliPro “General” group of setpoints, as well as selection of blocking binary inputs for selected functions.

Description
The functions to be blocked are located in the very left column called “Protection”. Functions can be added by pressing [+] button and removed by pressing [-] button. After selecting desired function, the “Setting” column offers selection for Disable or Enable the function. The third, “Blocking conditions” column, provides list of functions to create the logic matrix. It offers list of functions, as well as binary inputs for blocking (Block 1, Block 2) and operation in parallel (Parallel). Setting if the protection selected in the first column should be enabled, or disabled resp., by activation or deactivation of the function selected in the third column, can be distinguished by ticking off the box “NOT”. Blocking conditions can be also added by pressing [+] button and removed by pressing [-] button.

Help hints describing the set blocking conditions are available for each function upon placing cursor on the particular box.

WARNING
Blocking conditions can be saved as a part of an archive and uploaded to another unit with equal sw version. Blocking conditions cannot be transferred from older to newer InteliPro sw version, due to possible inconsistency in the range of available functions.
The speed of saving settings depends on the speed of the communication channel with the controller. If GPRS is used, uploading blocking conditions can last longer, therefore do not interrupt the process until uploading progress bar is shown.

In order to e.g. activate only one adjustable pickup used within a multiple-stages protective function, set the pickup limit of the other one to zero. E.g. InteliPro allows setting 2 stages of overvoltage protection. To use only V> and block the V>> stage, set the pickup limit V>> to 0V. In general, setting of any pickup limit of any protective function blocks this protection stage.

If activation of one functionality (e.g. f<>) is conditional to other (e.g QU Protection), the activation is triggered by limit violation of f<> and the condition lasts until Fault reset is performed.

It is possible, that in your unit, some optional protective functions are not activated. In such case, the function is permanently blocked and even the setpoints related to it are not visible. In case that this protection is requested, please consult your sales representative regarding the options unlocking.

Protective functions in detail

Overvoltage, Undervoltage (ANSI 59, 27)

The RMS value of measured voltage is compared with the preset limit of overvoltage or undervoltage. When any of the preset limits is over/underexceeded, the output U Sig moves to fault-indicating position immediately. If the voltage of the given phase keeps out of limits for the delay of the appropriate stage, TRIP is issued. As the voltage returns back within limits in all measured phases, the U Sig output stop to signal the fault state immediately, regardless of whether TRIP was issued or not or Fault reset was performed or not.

Both overvoltage and undervoltage protective stages provide possibility of setting 2 levels with independent delay assigned to each level.

In order to prevent from unwanted voltage oscillation around the overvoltage, respective undervoltage limits, there is a possibility to set up voltage hysteresis. The principle is shown in the pictures below. After overvoltage situation, voltage must decrease under the hysteresis limit to clear the fault. After undervoltage situation, voltage must exceed the hysteresis limit to clear the fault.

![Voltage hysteresis for overvoltage](image)

Voltage hysteresis for overvoltage
Overfrequency, Underfrequency (ANSI 81 H, L)

The frequency value measured on phase L1 is compared with the preset limit of overfrequency or underfrequency. When any of the preset limits is over/underreached, the output \(f_{\text{Sig}} \) moves to fault-indicating position immediately. If the frequency keeps out of limits for the delay of the appropriate stage, \(\text{TRIP} \) is issued. As the frequency returns back within limits, the \(f_{\text{Sig}} \) output stops to signal the fault state immediately, regardless of whether \(\text{TRIP} \) was issued or not or \(\text{Fault reset} \) was performed or not.

Both overfrequency and underfrequency protective stages provide possibility of setting 2 levels with independent delay assigned to each level.

In order to prevent from unwanted frequency oscillation around the overfrequency, respective underfrequency limits, there is a possibility to set up frequency hysteresis. The principle is shown in the pictures below. After overfrequency situation, frequency must decrease under the hysteresis limit to clear the fault. After underfrequency situation, frequency must exceed the hysteresis limit to clear the fault.
Voltage unbalance (ANSI 47)
The voltage unbalance is evaluated in case that amplitude difference between any 2 phases overreaches the preset limit $V_{Unb}: V_{Unb}$. It refers to the amplitude unbalance of the measured voltage.

Floating average overvoltage
The floating average overvoltage protection provides continuous 10 minutes long measurement of either phase-to-neutral or phase-to-phase voltage (depending on the Voltage Setup parameter setting). In case that the measured voltage exceeds the set limit, an immediate trip is issued. The limit $Avg\ V>$ is in the setpoints group $U<>$.

"Loss of mains" protections
InteliPro provides two different methods for fast evaluation of loss of mains (LOM), into which the generator operates:
- Vector shift
- Rate Of Change Of Frequency
The loss-of-mains protections setpoints are in the group LOM.

Vector shift (ANSI 78)
Vector shift is one of the LOM protections. It provides very fast detection of mains failure (in units or tens of ms), based on the principle of shift of the synchronous generator displacement angle. The displacement angle is an angle between magnetic field of a rotor and the rotating magnetic field of the stator winding and relates strongly to the load of the generator. In case that this load changes, the displacement angle immediately changes by a "jump". Compared to the frequency decrease, which probably also occurs, this jump is an immediate phenomena and is detected as a shift of the measured voltage sine curve - Vector shift or Vector jump. Depending on the preset limit in degrees [$^\circ$], it allows immediate disconnection of very fast failures and thus prevention of severe damages which could not be prevented within the delay of frequency or voltage protections.
Vector shift reaction times are usually requested up to 30ms. Typical setting is shown e.g. in G59/3 standard (see below).

Rate Of Change Of Frequency (df/dt, ROCOF, ANSI 81R)

ROCOF is second most frequently requested method of LOM detection. In principle, the method uses similar evaluation method like Vector shift, but the physical phenomena detected is different. It calculates the change of speed of the generator, caused by sudden change in its load, together with unintentional islanding situation (loss of mains), which is normally capable of keeping the frequency on a stable level. The frequency change is expressed as tangent in time [Hz/s]:

![Diagram of ROCOF detection - negative df/dt](image1)

![Diagram of ROCOF detection - positive df/dt](image2)
In case that absolute value of this tangent overreaches a pre-set pickup limit, the protection trips. It is a fast protection, similar to Vector shift, however, unlike Vector shift, which detects immediate phenomena, the tangent calculation requires a certain time for evaluation. In ComAp protection relays, the evaluation time for ROCOF protection can be adjusted by setpoint ROCOF filt in number of sine curve cycles being taken into evaluation from 1 to tens of cycles (each having 20ms). This allows setting up the ratio between the evaluation speed and sensitivity to nuisance trips.

Overcurrent: definite-time, IDMT and with voltage control

InteliPro provides three types of mains-overcurrent with different setting of the protection delay:

Definite time overcurrent (ANSI 50):
The trip is issued in a given delay after the current in any phase exceeds pre-set pickup limit. The setting is done using the setpoints in the group I>.

IDMT overcurrent (ANSI 51)
The IDMT (inverse definite minimum time) overcurrent protection evaluates the true RMS value of the current independently in any of the 3 phases (is activated if the overcurrent is detected in only one phase). This protection provides delayed overcurrent trip, where the delay is based on the current magnitude. The setting is done using the setpoints in the group I> T.

The relation between the time and current is set by the following curve.

\[
\text{Tripping} \\
\text{The trip time can be calculated from the following formula:}
\]

\[
t(I) = \left(\frac{A}{M^P - 1} + B \right)
\]

where \(t(I) \) is the trip time

- \(M \) is the ratio of measured current value and pickup current (pickup is the nominal current),
- \(p, A \) and \(B \) are constants which determine the final shape of the curve.

The trip delay, respectively the curve shape is to be prescribed by the DNO, based on the calculations of short-circuit conditions in the point of the generator connection. The grid protections are coordinated and allow for isolating the faults by the protections which are located closer to the short-circuit area. This way, the discrimination of the breakdown point is done by the short-circuit current magnitude allowing the generator to ride-through a distant faults and contribute to recover the mains voltage after the fault is disconnected.
InteliPro offers pre-set curves according to ANSI and IEC standards, and one “IDMT” curve. The shape of the IDMT curve can be selected using the parameter \(I> T: I> T \) Curve.

The curves can have the following shapes:

List of the used constants for curve shape determination:

- **ANSI**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A</th>
<th>B</th>
<th>p</th>
<th>(t_0^*)</th>
<th>(p^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderately inverse</td>
<td>0.0515</td>
<td>0.1140</td>
<td>0.02</td>
<td>48.5</td>
<td>2</td>
</tr>
<tr>
<td>Very inverse</td>
<td>19.61</td>
<td>0.491</td>
<td>2</td>
<td>21.6</td>
<td>2</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>28.2</td>
<td>0.1217</td>
<td>2</td>
<td>29.1</td>
<td>2</td>
</tr>
</tbody>
</table>

- **IEC**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A</th>
<th>B</th>
<th>p</th>
<th>(t_0^*)</th>
<th>(p^{**})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse</td>
<td>0.14</td>
<td>0</td>
<td>0.02</td>
<td>9.7</td>
<td>2</td>
</tr>
<tr>
<td>Very inverse</td>
<td>13.5</td>
<td>0</td>
<td>1</td>
<td>43.2</td>
<td>2</td>
</tr>
<tr>
<td>Extremely inverse</td>
<td>50</td>
<td>0</td>
<td>2</td>
<td>58.2</td>
<td>2</td>
</tr>
</tbody>
</table>
- **IDMT**

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A</th>
<th>B</th>
<th>p</th>
<th>t_*</th>
<th>p^{**}</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDMT</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
</tr>
</tbody>
</table>

*Reset time for $(M = 0)$

Reset constant

If the option IDMT is selected, then the trip time formula can be simplified as follows:

$$\text{Reaction time} = \frac{2I_{nom \, del} \cdot NominMainsCurr}{\text{Mains current} - \text{NominMainsCurr}}$$

In this case the $I \cdot T \, \text{Del}$ equals to the reaction time for 200% overcurrent (when mains current $= 2 \cdot \text{NominMainsCurr}$).

- **Resetting**

The IDMT protection provides also the mechanism of time-dependent resetting curves after the current decreases to or below the nominal current. This mechanism respects the cooling characteristics of the protected device. See the picture below for the complete curves shape including the reset characteristics:
The reset time can be calculated from the following formula:

\[\tau(I) = -T_{dial} \cdot \frac{t_r}{\left(\frac{I}{I_{nom}}\right)^{p} - 1} \]

where \(t(I) \) is the reset time after tripping,
\(T_{dial} \) is multiplier (I>T Del in IDMT curve),
\(I \) is the measured current value pickup current,
\(I_{nom} \) nominal current (pickup current),
\(t_r \) and \(p \) are constants which determine the final shape of the curve (values to be found in the tables with other constants above).

The IDMT tripping curve and resetting curve depends on the conditions to which InteliPro was exposed, as the unit requires some time to recover after being subjected to overcurrent. The reset time does not depend on the magnitude of the overcurrent, but it depends on how long the overcurrent \((I>I_{n}) \) was present before the circuit breaker was opened.

The provided ANSI51 curve shapes are multiplied by the time multiplier, set by the setpoint \(I> T \ Del \). This way, the final shape of the tripping curve is calculated. See the example of the ANSI Moderately Inverse curve multiplied by various time multipliers:

IMPORTANT:
Please note that InteliPro current measurement inputs range is 5A with over-range up to 9A. This range provides possibility of ANSI 51 curves calculation up to cca 2x \(I_{n} \) in case that 5A CT secondary current is used. To allow evaluation of higher currents and appropriate delays according to the mentioned curves, we recommend using lower secondary rating of the current transformers (typically 1A) and then setting the current ratio accordingly. Please note, that this solution though decreases the accuracy of the measurement, which is designed for the 5A CT output.
Time overcurrent with voltage control and restraint (ANSI 51V)
The voltage control of time overcurrent assures that the protection is blocked in case that the measured voltage is above the level set by the setpoint $I_{> V}$: $I_{> V}$ Control.

The voltage restraint function is a modification of the IDMT overcurrent protection. It uses the same mechanism of the delay calculation according to the IDMT trip curve, but the delay is further adjusted according to the measured voltage:

![Graph showing trip current as % of IDMT current limit at nominal voltage](image)

This protection functionality uses the fact that voltage in the point of short-circuit drops to zero or very low values and with growing distance from the fault, it increases up to the mains nominal voltage value. Thus, increased sensitivity to short-circuits localization and protection coordination is provided. The setting is done using the setpoints in the group $I_{> V}$.

Earth Fault Current (ANSI 50N, ANSI 51N)
For the earth fault current protection, the 5 A current measurement input, located on the plug-in module Relay Card CT2-REL2 is used. The protection stage allows setting up instantaneous neutral overcurrent or IDMT overcurrent, similar to the mains overcurrent protective functions. The setting is done using the setpoints group EFC.

Ground Surge Current (ANSI 50GS, ANSI 51GS)
The function is intended for detection of non-zero current used to indicate earth faults by sensitive ground sensors. The function enables very sensitive measurement in level up to 50 mA, so it is applicable e.g. for Hall sensors measurement. Please note, that due to very low measurement range, it must be assured that the current will not overreach 120mA, what is the thermal capacity of the input.

For the ground surge current protection, the 50 mA current measurement input, located on the plug-in module Relay Card CT2-REL2 is used. The protection stage allows to set up instantaneous ground surge overcurrent (ANSI 50GS) or IDMT overcurrent (ANSI 51GS), similar to the mains overcurrent protective functions. The setting of the 50GS/51GS function is done using the IGS setpoints group. Unlike the mains current or earth fault current protections, the limit setting is done directly in mA.

Current unbalance (ANSI 46)
The current unbalance protection is used to avoid unbalanced load in the point of mains connection. The setting is done using the setpoints in the setpoint group I_{Unb}. The units of I_{Unb} are in percent of current nominal value.
Directional overcurrent (DOC, ANSI 67)

DOC is sensitive for location of the fault with relation to the measurement point. This way, directional protection is capable to detect whether the fault happened "in front of it" or "behind". Directional overcurrent protection, applied in the point of generator connection to mains, is considered a loss of mains protection, however it does not substitute the traditional loss of mains protections like Vector shift or ROCOF. The typical application is a generator running in parallel to mains with its own load consumption (e.g. peak shaving, soft transfer stand-by, or other applications). The generator is usually used to support the local consumption with no export to the mains. In case of mains transition into an island mode, the generators, running in parallel with the islanded area, would start to supply its complete consumption, generating current in opposite direction. DOC protection is used to avoid this situation, and trip the generator from the islanded mains, combining the overcurrent protection together with its directional character. Compared to the "reverse power protection", DOC protection detects also reactive currents from the given angle zone, what allows better sensitivity for tripping.

The following image shows the conditions of activation of Directional Overcurrent protection in InteliPro – i.e. critical angles between voltage and current, given the voltage is placed at the 0° angle:

Neutral Voltage Displacement (NVD, ANSI 59N)

NVD protective function is used in medium or high voltage systems with isolated or indirectly grounded zero-point. Under healthy conditions of the system, the sum of the three phase-to-earth voltages should balance to zero. When an earth-fault occurs, it does not cause a short-circuit, because of the isolation of the system in the zero point. However, the fault provides connection of one phase with
earth what represents hazard for the system safety (ground-fault in any other phase would then mean a phase-to-phase short-circuit, phase-to-ground voltage of the other phases may fluctuate to multiples of its nominal, providing increased stress to the isolation system, etc). One of the effects of the fault is a rise in the neutral voltage, so called neutral voltage displacement. This neutral voltage displacement is measured in a specific "open-delta" connection of voltage transformers, as shown in the chapter Voltage and current inputs. In some cases, it is required to clear the fault by tripping the appropriate circuit breaker. However, the NVD protection itself does not allow detecting the location of a fault and for this reason it is sometimes used only for providing an earth-fault alarm. A specific function is provided incase that mains failure is detected by an external device e.g. for purpose of redundancy: If the external device indicates a mains failure state and activates the input Ext Mf Relay, the NVD trip outputs are blocked. To unblock the NVD protection, it is necessary not only to deactivate the Ext Mf Relay input, but also to deactivate the feedback of the circuit breaker, which is operated by the NVD protection stage. It is possible to set whether the NVD contributes to the common trip of the relay or uses its own separate output for signalization of the NVD alarm. The setting is done using the setpoints in the group NVD.

Directional power (ANSI 32)
InteliPro provides two stages of power protections, both of them allowing setting of either overreaching the preset limit or underreaching it. This way, all of the following protections are realized:
- Mains reverse power (protection of unintentional export)
- Generator reverse power (protection of motoric operation)
- Minimum import underreaching (timely trip in case of unintentional export approaching)
The setting is done using the setpoints in the group P.

Power Factor (ANSI 55)
InteliPro provides inductive (current is lagging voltage) and capacitive (current is leading voltage) power factor evaluation. In case the value of the measured power factor falls below the set limit, trip output is activated accordingly.
The power factor evaluation is based on the phase difference between current and voltage. The setting is done using the setpoints in the group PF.

Synchro check (ANSI 25)
This function checks state of synchronism at both sides of the circuit breaker. It is used as a supplementary function to automatic reconnection of the other functions to assure that the synchronous conditions are met before the circuit breaker closes back by the protection relay, or is unblocked to be closed by some other device. In InteliPro, either L1-L2 phase-to-phase voltage or L1-N phase-to-neutral voltage is measured on the generator side of the circuit breaker and compared with the corresponding measured mains voltage. Whether phase-to-phase or phase-to-neutral voltage is used is decided by the setpoint Basic Settings: Voltage Setup. Synchronous conditions are evaluated based on the pre-set window of voltage, frequency and angle match as set in the setpoint group Sync Check.

AC reclosing (ANSI 79)
The automatic reclosing mechanism is generally used in situation, where temporary nature of the failure is expected. The protection relay trips the breaker according to the standard protection settings. As soon as the trip conditions disappear, i.e. the protection senses fault-free situation, the tripping output deactivates and after a reclosing delay, the reclosing output issues a signal to automatically reclose the breaker. There may be several reclosure attempts done in case of unsuccessful reclosing cycle. The setting is done using the setpoints in the group AC Reclosing.

Pole Slip (ANSI 78PS)
The protection against pole slip ensures immediate disconnection of a generator running in parallel-to-mains in case that the load angle of the generator, which determines its loading, exceeds preset limit. The protection prevents from high overcurrents and mechanical stresses that occur when e.g. the load within the supplied area plummet significantly.
The setting is done using the setpoints in the group Pole Slip. For pole slip protection evaluation of the RPM input is necessary, thus RPM input wire must be connected to the appropriate connectors and nominal revolutions per minute must be set in the setpoint Nominal RPM. Also, number of the engine’s flywheel teeth must be set in the setpoint Gear Teeth. The load angle limit is set in the setpoint Pole Slip Lim.

IMPORTANT:
For the RPM input **shielded cable** must be used!
The function is active only in parallel operation, thus all CBs must be closed. For correct operation the mains voltage frequency and also the generator voltage frequency must be measured and synch check wires connected. InteliPro must be switched on before the engine starts running.

Dynamic grid support
Dynamic grid support function is used to support balanced status of the grid by retaining the connection of the generator to mains even during large voltage drops. The relay will not trip immediately in case of undervoltage, instead it will compare the measured voltage with the preset red curve. The shape of the curve is determined by voltage levels in setpoints V Lim 1, V Lim 2, V Lim 3, and time delays in setpoints Delay 1, Delay 2, Delay 3.

If the measured voltage falls below the red curve, a trip is issued. The time delay after which the protection starts to follow the curve from the beginning can be set in the setpoint Reset Time.

QU (undervoltage dependent directional reactive power) protection
QU, or undervoltage dependent directional reactive power protection is used to disconnect a power supply from the mains in case that the grid balance is threatened. This is achieved by evaluation of more variables – this function evaluates combination of mains voltage, current and reactive power at the decoupling point and only if all of the following conditions are fulfilled, the protection will activate:

1. Voltages in all three phases drops below the setpoint „V<“
2. Currents in one phase exceed the set threshold (setpoint "I Min")
3. The amount of produced reactive power violates the threshold (determined by the setpoint "Q Min")
As soon as all the above conditions are met, the protection will activate and issue a trip to open the GCB ("QU Gen Prot") with a time delay 1 ("QU Del 1"). In case of no response (CB Feedback will not deactivate), second trip ("QU Mns Prot") is issued in order to separate the generator from the network after time delay 2 ("OU Del 2") by the MCB.

If the voltage returns back and exceed the set limit ("Rst V<"), the protection trip state will be deactivated and fault can be reset.

The conventional fault reset applies, which determines the time after the function will be reactivated since the condition of voltage return above 95% Un in all three phases and frequency returns to the range of 47,50 Hz and 50,05 Hz.
InteliPro
Protection Relay for Parallel Applications

Application Guide

SW version 1.6, November 2014

Communication Brochure
Table of contents

Table of contents .. 1
CAN bus and RS485 .. 3
 Recommended CAN/RS485 connection ... 4
 CAN bus connection .. 4
 RS485 connection .. 5
Communication modules ... 7
 IL-NT-232 ... 7
 IL-NT-RS232-485 .. 7
 IL-NT-S-USB .. 8
 IL-NT-AIO .. 8
 How to set up IL-NT-AIO module in LiteEdit ... 9
IB-Lite ... 11
 How to set up IB-Lite module .. 12
CAN bus and RS485

InteliPro provides the possibility of interconnecting it with technology on-site by RS485 communication and especially with other ComAp units, the CAN2 connection is possible in order to transmit data from InteliPro to them via the communication line. CAN1 communication line is used to interconnect the extension modules of InteliPro. For wiring of CAN bus communication, the following rules are to be maintained:

- Maximal length of the CAN bus depends on the communication speed. For the speed of 250kbps, which is used on the CAN1 bus (extension modules) and CAN2 bus if it is switched to 32C mode the maximal length is 200m. If the CAN2 bus is switched to 8C mode by the setpoint Comms settings: CAN Bus Mode, the speed is 50kbps and the maximal length is 800m.
- The bus must be wired in linear form with termination resistors at both ends. No nodes except on the controller terminals are allowed. Use cable with following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable type</td>
<td>Shielded twisted pair</td>
</tr>
<tr>
<td>Impedance</td>
<td>120Ω</td>
</tr>
<tr>
<td>Propagation velocity</td>
<td>>= 75% (delay <= 4.4 ns/m)</td>
</tr>
<tr>
<td>Wire crosscut</td>
<td>>= 0.25mm²</td>
</tr>
<tr>
<td>Attenuation (@1MHz)</td>
<td><= 2dB/100m</td>
</tr>
</tbody>
</table>
CAN bus topology

NOTE:
See the web page www.can-cia.org for information about CAN bus, specifications etc.

Recommended CAN/RS485 connection

CAN bus connection

The bus has to be terminated by 120 Ohm resistors at both ends. External units can be connected on the CAN bus line in any order, but keeping line arrangement (no tails, no star) is necessary. Standard maximum bus length is 200m for 32C CAN BUS MODE and 900m for 8C CAN BUS MODE. Shielded cable must be used, shielding has to be connected to PE on one side (controller side).

1. For shorter distances (all network components within one room) – picture 1
 Interconnect H and L; shielding connect to PE on controller side
2. For longer distances (connection between rooms within one building) – picture 2
 Interconnect H, L, COM; shielding connect to PE in one point
3. In case of surge hazard (connection out of building in case of storm etc.) – picture 3
 We recommend to use following protections:
• Phoenix Contact (http://www.phoenixcontact.com): PT 5-HF-12DC-ST with PT2x2-BE (base element)
• Saltek (http://www.saltek.cz): DM-012/2 R DJ

Recommended data cables: BELDEN (http://www.belden.com)

1. For shorter distances: 3105A Paired - EIA Industrial RS-485 PLTC/CM (1x2 conductors)
2. For longer distances: 3106A Paired - EIA Industrial RS-485 PLTC/CM (1x2+1 conductors)
3. In case of surge hazard: 3106A Paired - EIA Industrial RS-485 PLTC/CM (1x2+1 conductors)

RS485 connection

The line has to be terminated by 120 Ohm resistors at both ends. External units can be connected on the RS485 line in any order, but keeping line arrangement (no tails, no star) is necessary. Standard maximum link length is 1000m. Shielded cable has to be used, shielding has to be connected to PE on one side (controller side).

1. For shorter distances (all network components within one room) – picture 1
2. For longer distances (connection between rooms within one building) – picture 2
3. In case of surge hazard (connection out of building in case of storm etc.) – picture 3

We recommend to use following protections:
• Phoenix Contact (http://www.phoenixcontact.com): PT 5-HF-5DC-ST with PT2x2-BE (base element)(or MT-RS485-TTL)
• Saltek (http://www.saltek.cz): DM-006/2 R DJ

Recommended data cables: BELDEN (http://www.belden.com)

1. For shorter distances: 3105A Paired - EIA Industrial RS-485 PLTC/CM (1x2 conductors)
2. For longer distances: 3106A Paired - EIA Industrial RS-485 PLTC/CM (1x2 conductors)
3. In case of surge hazard: 3106A Paired - EIA Industrial RS-485 PLTC/CM (1x2+1 conductors)
PICTURE 2 - LONGER DISTANCES (CONNECTION BETWEEN ROOMS WITHIN ONE BUILDING)

PICTURE 3 - SURGE HAZARD (CONNECTION OUT OF BUILDING IN CASE OF STORM ETC.)
Communication modules

Communication module enables connection of a remote computer or other remote device such as PLC to InteliPro. The module is to be plugged-in into the slot in the rear side of InteliPro. The slot is accessible after slot cover is removed.

SLOT FOR COMMUNICATION MODULES

NOTE:
The modules are compatible with ComAp IL-NT and IC-NT controllers.

IL-NT-232
This module contains a RS232 port with all modem signals connected internally to the COM1 of the controller. DB9M connector is used on the RS232 side.

IL-NT-RS232-485
The IL-NT-232-485 is a dual port module with RS232 and RS485 interfaces at independent COM channels. The RS232 is connected to COM1 and RS485 to COM2.
IL-NT-S-USB

This module contains USB slave port connected internally to the COM1 of the controller and is designed as an easy removable service module.

This module requires a FTDI USB Serial converter driver installed in the PC. The driver creates a virtual serial port (COM) in the PC, which must be used in LiteEdit as communication port when a connection is being opened.

NOTE:
The FTDI driver is installed together with LiteEdit.

NOTE:
When the USB cable from the controller is plugged-in first time into different USB ports on the PC including USB hubs, it can be recognized as new hardware and the drivers are installed again with different number of the virtual serial port.

CAUTION!
Use shielded USB cable only!

IL-NT-AIO

IL-NT-AIO is an extension plug-in module with four configurable analog inputs for the sensors (in the range 0-2400 ohm; 0/4-20mA; 0-4VDC) and one configurable analog output for the sensor (in the range 0/4-20mA; 0-4.5VDC; PWM 5V/500Hz). The setting of IL-NT-AIO can be done via LiteEdit through some of the supported communication modules.
The type of analog input is selectable by jumper. Each analog input has its own line of jumper position. The top position (closest to green connector on the picture above) is for resistive input, central position for voltage input and lowest position is for current input.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Resistance</th>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI1 – AI4</td>
<td>2600 Ohm</td>
<td>4V</td>
<td>20 mA</td>
</tr>
<tr>
<td>Iout</td>
<td>0 – 20 mA (max 22mA)</td>
<td>max 100 Ohm load</td>
<td></td>
</tr>
<tr>
<td>Uout</td>
<td>0 – 4,5V (max 10mA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM</td>
<td>PWM 5V / 15mA / 500 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not used</td>
<td>Do not connect!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How to set up the IL-NT-AIO module in LiteEdit

In Lite Edit click on the Modify configuration button 🔄 in the upper toolbar.

In the window Modify, click on the button Extension Plug-in modules 🔄 under which you can set extension modules.

Choose IL-NT-AIO option from the drop-down list.
After double-clicking on one of the four analog inputs, type of the input and its behaviour can be defined (Not used, Alarm, or Monitoring).

In case Alarm type is chosen, the input configuration can be defined. In case Binary or Tri state is chosen, alarm type and contact type can be configured. For analog configuration, type of the alarm and conditions of the alarm activation can be set up. It is also possible to define the operating curve of the sensor. The curve can be saved and loaded later.

In case Monitoring type is chosen, an input configuration can be defined. In case of Binary or Tri state, contact type can be configured. For analog configuration, the operating curve of the sensor can be defined.
IB-Lite

IB-Lite is a plug-in module with Ethernet 10/100 Mbit interface in RJ45 connector. The module is internally connected to both COM1 and COM2 serial channels and provides an interface for connecting a PC with LiteEdit or InteliMonitor through Ethernet/internet network, for sending active e-mails and for integration of the controller into a building management (Modbus/TCP protocol).

IB-LITE MODULE

Use Ethernet UTP cable with RJ45 connector for connection of the module into your ethernet network. The module can be also connected directly to a PC using cross-wired UTP cable.

CROSS-WIRED UTP 10/100Mbit CABLE

NOTE:
Please note that for correct operation of IB-Lite interface, the setpoint COM1 Mode must be set to the DIRECT position!

For communication using Modbus TCP protocol via IB-Lite module, the recommended setting is:
- COM1 Mode: DIRECT
- COM2 Mode: MODBUS
- ModbusComSpeed: 57600
How to set up the IB-Lite module

There are three possibilities of connection:

A) Direct connection between PC and IB-Lite
B) Connection of IB-Lite to Ethernet/Internet by using dynamic IP and AirGate
C) Connection of IB-Lite to Ethernet by using static IP or to Internet by using public static IP

Ad A) Direct connection between PC and IB-Lite

1. Turn on the controller.

2. Set up local network in your PC at:
 - IP Address: 192.168.1.10
 - Network Mask: 255.255.255.0
 - Gateway IP: 192.168.1.1

 Check the “Comms Settings” directly on the controller:
 - Press button. Choose “Comms Settings” by using of arrows and press .
 - Check “IBLite IP Addr” – should be 192.168.1.254 as default. If the IP is different change it with and buttons to the correct one. “IBLite DHCP” and “AirGate” has to be DISABLED.

 NOTE:
 “Comms Settings” of controller can be as well changed by using of LiteEdit software via IL-NT RS232, IL-NT RS232-485 or IL-NT S-USB communication modules.

 WARNING:
 Disconnect power source from the controller before exchanging the communication module!

3. Connect the IB-Lite and PC via UTP cable (it is recommended to use the crossed cable).

 CONTROLLER DISPLAY: COMMS SETTINGS

4. For connection with controller use LiteEdit or InteliMonitor software or just a web browser and insert IP Address 192.168.1.254 (default IP) into the address bar which will allow you access to embedded SCADA WebServer.
Ad B) Connection of IB-Lite to Ethernet/Internet by using of dynamic IP and AirGate

NOTE:
Use this possibility when you have not assigned static Ethernet IP address from your IT department or static public IP from your internet provider.

1. Turn on the controller.

2. Setup “Comms Settings” directly on the controller:
 - Press \[\text{Menu}\] button. Choose “Comms Settings” by using of arrows \[\text{Up}\] and \[\text{Down}\] and press \[\text{Enter}\].
 - Setup “IBLite DHCP” and “AirGate” as ENABLED.
 - Setup. “AirGate IP” as “airgate.comap.cz”.

NOTE:
“Comms Settings” of controller can be as well changed by using of LiteEdit software via IL-NT RS232, IL-NT RS232-485 or IL-NT S-USB communication modules.

WARNING:
Disconnect power source from the controller before exchanging the communication module!

3. Connect the IB-Lite to the router (or Internet/Ethernet socket) via UTP cable.
 - Wait a while (or turn the controller off and on).
 - Check the “AirGate ID”: Press few times \[\text{Up}\] button on the basic controller display until you see GSM/Modem status screen. Remember the AirGate ID.

TABLE OF AIRGATE DIAGNOSTIC CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Waiting for connection to AirGate Server</td>
</tr>
<tr>
<td>1</td>
<td>Controller registered, waiting for authorization</td>
</tr>
<tr>
<td>2</td>
<td>Not possible to register, controller blacklisted</td>
</tr>
<tr>
<td>3</td>
<td>Not possible to register, server has no more capacity</td>
</tr>
<tr>
<td>4</td>
<td>Not possible to register, other reason</td>
</tr>
<tr>
<td>5</td>
<td>Controller registered and authorized</td>
</tr>
</tbody>
</table>

4. For connection with controller use LiteEdit or InteliMonitor software or just a web browser with your WebSupervisor account (http://websupervisor.comap.cz). Connect to the controller via AirGate, type in the AirGate ID and use “airgate.comap.cz” as an AirGate address (AirGate Server).
Ad C) Connection of IB-Lite to Ethernet by using of static IP or to Internet by using of public static IP

NOTE:
Use this possibility when your IT department has a Static Ethernet IP at your disposal or when the Static Public IP from your internet provider is available.

1. Turn on the controller.
2. Setup “Comms Settings” directly on the controller:
 - Press button. Choose “Comms Settings” by using of arrows and press .
 - Setup items of “IBLite IP Addr”, “IBLite NetMask” and “IBLite GateIP” according to information from your IT department (internal network) or internet provider (public network). “IBLite DHCP” and “AirGate” has to be DISABLED.

NOTE:
“Comms Settings” of controller can be as well changed by using LiteEdit software via IL-NT RS232, IL-NT RS232-485 or IL-NT S-USB communication modules.

WARNING:
Disconnect power source from the controller before exchanging the communication module!

3. Connect the IB-Lite to the router via UTP cable.
4. For connection with controller use LiteEdit or InteliMonitor software or just a web browser with your WebSupervisor account (http://websupervisor.comap.cz) or simply embedded SCADA WebServer with putting of public IP Address (“IBLite IP Addr”) into the address bar.

For more detail about communication of ComAp products, see the IL-NT, IA-NT, IC-NT Communication Guide as published on [ComAp download centre](http://download.comap.cz).
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents</td>
<td>1</td>
</tr>
<tr>
<td>Library of binary inputs</td>
<td>8</td>
</tr>
<tr>
<td>Binary alarm and functional input configuration items</td>
<td>8</td>
</tr>
<tr>
<td>Alarm</td>
<td>9</td>
</tr>
<tr>
<td>CB1 Feedback</td>
<td>9</td>
</tr>
<tr>
<td>CB2 Feedback</td>
<td>9</td>
</tr>
<tr>
<td>F.R. Button</td>
<td>9</td>
</tr>
<tr>
<td>DC Trip Circuit</td>
<td>9</td>
</tr>
<tr>
<td>Access Lock</td>
<td>9</td>
</tr>
<tr>
<td>Ext MF Relay</td>
<td>9</td>
</tr>
<tr>
<td>Block 1, Block 2</td>
<td>10</td>
</tr>
<tr>
<td>CtrlHBeat sens</td>
<td>10</td>
</tr>
<tr>
<td>CB1 open</td>
<td>10</td>
</tr>
<tr>
<td>CB1 close</td>
<td>10</td>
</tr>
<tr>
<td>Library of binary outputs</td>
<td>11</td>
</tr>
<tr>
<td>Common Alarm</td>
<td>11</td>
</tr>
<tr>
<td>Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>!Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>Bak Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>!Bak Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>Del Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>!Del Comm Trp</td>
<td>11</td>
</tr>
<tr>
<td>Trp 1</td>
<td>11</td>
</tr>
<tr>
<td>!Trp 1</td>
<td>12</td>
</tr>
<tr>
<td>Bak Trp 1</td>
<td>12</td>
</tr>
<tr>
<td>!Bak Trp 1</td>
<td>12</td>
</tr>
<tr>
<td>Trp 2</td>
<td>12</td>
</tr>
<tr>
<td>!Trp 2</td>
<td>12</td>
</tr>
<tr>
<td>Bak Trp 2</td>
<td>12</td>
</tr>
<tr>
<td>!Bak Trp 2</td>
<td>12</td>
</tr>
<tr>
<td>U<> Prot</td>
<td>12</td>
</tr>
<tr>
<td>U< Prot</td>
<td>12</td>
</tr>
<tr>
<td>U> Prot</td>
<td>12</td>
</tr>
<tr>
<td>f<> Prot</td>
<td>12</td>
</tr>
<tr>
<td>f< Prot</td>
<td>13</td>
</tr>
<tr>
<td>f> Prot</td>
<td>13</td>
</tr>
<tr>
<td>V Unb Prot</td>
<td>13</td>
</tr>
<tr>
<td>V<Pos</td>
<td>13</td>
</tr>
<tr>
<td>V>NEG</td>
<td>13</td>
</tr>
<tr>
<td>PhaseRot Prot</td>
<td>13</td>
</tr>
<tr>
<td>VectorS Prot</td>
<td>13</td>
</tr>
<tr>
<td>ROCOF Prot</td>
<td>13</td>
</tr>
<tr>
<td>DOC Prot</td>
<td>13</td>
</tr>
<tr>
<td>P Prot</td>
<td>13</td>
</tr>
<tr>
<td>PF Prot</td>
<td>13</td>
</tr>
<tr>
<td>Ind PF Prot</td>
<td>13</td>
</tr>
<tr>
<td>Cap PF Prot</td>
<td>13</td>
</tr>
<tr>
<td>I> Prot</td>
<td>13</td>
</tr>
<tr>
<td>NVD> Prot</td>
<td>13</td>
</tr>
<tr>
<td>!NVD> Prot</td>
<td>14</td>
</tr>
<tr>
<td>NVD>> Prot</td>
<td>14</td>
</tr>
<tr>
<td>!NVD>> Prot</td>
<td>14</td>
</tr>
<tr>
<td>EFC Prot</td>
<td>14</td>
</tr>
<tr>
<td>IGS Prot</td>
<td>14</td>
</tr>
<tr>
<td>I Unb Prot</td>
<td>14</td>
</tr>
<tr>
<td>DC Healthy</td>
<td>14</td>
</tr>
<tr>
<td>Watchdog</td>
<td>14</td>
</tr>
</tbody>
</table>
Ctrl HeartBeat ... 14
MaxParTime .. 14
IPMaxParTime .. 14
USig .. 14
fSig .. 14
UUnbSig ... 15
LOMSig .. 15
lSig .. 15
IUnbSig .. 15
DOC Sig .. 15
DOC Test ... 15
EFCT >Sig .. 15
IGS >Sig ... 15
NVD Sig .. 15
PSig .. 15
PFSig ... 16
Sync Check ... 16
AC Reclosing .. 16
CB1 Protection ... 16
CB2 Protection ... 16
Self Test .. 16
Mains OK ... 16
Avg V Prot ... 16
Pole Slip Prot .. 16
Dyn Volt Prot ... 17
CtrlHBeatFD ... 17
QU Gen Prot ... 17
QU Mns Prot ... 17
CB1 ON Man ... 17
CB1 OFF Man .. 17
CB1 UV Coil .. 17
ALAx Wn/Trp, AL IOM Alx Wn/Trp ... 17
ALAux Volt ... 17
AL Common Wn ... 17
AL Common Fls ... 17
ALx Wn/Trp Sig, IOM Alx Wn/Trp Sig .. 17
Blx Status, IOM Blx Status ... 17
RemoteControl1 - 8 .. 17

Library of setpoints .. 19
Basic Settings .. 19
ControllerName ... 19
Mains CT Ratio [A/5A] ... 19
Mains CT Polar [FORWARD / REVERSE] .. 19
EFCRatio [A/5A] ... 19
Mains PT Ratio [V/V] ... 19
Gen PT Ratio [V/V] ... 19
NomVolts Ph-N [V] .. 19
NomVolts Ph-Ph [V] .. 20
Nominal Freq [Hz] .. 20
Nominal Power [kW] .. 20
NomMainsCurr [A] .. 20
VoltageSetup [Ph To N / Ph To Ph] ... 20
CB1 Prot Timer [s] .. 20
CB2 Prot Timer [s] .. 21
StartTrip [DISABLED / ENABLED] .. 21
Comms Settings ... 21
Contr. Addr ... 21
COM1 Mode [DIRECT / MODEM / MODBUS] .. 21
<table>
<thead>
<tr>
<th>Feature</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>COM2 Mode</td>
<td>[DIRECT / MODEM / MODBUS]</td>
</tr>
<tr>
<td>ModemIniString</td>
<td></td>
</tr>
<tr>
<td>ModbusComSpeed</td>
<td>[9600 / 19200 / 38400 / 57600 bps]</td>
</tr>
<tr>
<td>CAN Bus Mode</td>
<td>[32C / 8C]</td>
</tr>
<tr>
<td>IBLite IP Addr</td>
<td></td>
</tr>
<tr>
<td>IBLite NetMask</td>
<td></td>
</tr>
<tr>
<td>IBLite GateIP</td>
<td></td>
</tr>
<tr>
<td>IBLite DHCP</td>
<td></td>
</tr>
<tr>
<td>IP Addr Mode</td>
<td></td>
</tr>
<tr>
<td>ComAp Port</td>
<td></td>
</tr>
<tr>
<td>APN Name</td>
<td></td>
</tr>
<tr>
<td>APN UserName</td>
<td></td>
</tr>
<tr>
<td>APN UserPass</td>
<td></td>
</tr>
<tr>
<td>AirGate</td>
<td></td>
</tr>
<tr>
<td>AirGate IP</td>
<td></td>
</tr>
<tr>
<td>SMTP UserName</td>
<td></td>
</tr>
<tr>
<td>SMTP UserPass</td>
<td></td>
</tr>
<tr>
<td>SMTP Server IP</td>
<td></td>
</tr>
<tr>
<td>Contr MailBox</td>
<td></td>
</tr>
<tr>
<td>Time Zone</td>
<td></td>
</tr>
<tr>
<td>DNS IP Address</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>ProtActiv Del</td>
<td>[s]</td>
</tr>
<tr>
<td>BackupTrp Del</td>
<td></td>
</tr>
<tr>
<td>Comm Trp Del</td>
<td></td>
</tr>
<tr>
<td>Comm Trp Len</td>
<td></td>
</tr>
<tr>
<td>Auto FR</td>
<td>[DISABLED / ON DEACT / CB1+CB2=0 / NOFAULT+DEL]</td>
</tr>
<tr>
<td>Auto FR Del</td>
<td>[s]</td>
</tr>
<tr>
<td>Prio Switching</td>
<td>[DISABLED / CB1 -> CB2 / CB1 <-> CB2 / CB1 <-> CB2]</td>
</tr>
<tr>
<td>IPro-SW Key</td>
<td></td>
</tr>
<tr>
<td>Aux V<</td>
<td></td>
</tr>
<tr>
<td>Aux >V</td>
<td>V</td>
</tr>
<tr>
<td>Aux <V</td>
<td>V</td>
</tr>
<tr>
<td>Aux V Del</td>
<td>[s]</td>
</tr>
<tr>
<td>V> , V>>, V< , V<<</td>
<td>V</td>
</tr>
<tr>
<td>V> Del, V>> Del, V< Del, V<< Del</td>
<td>[s]</td>
</tr>
<tr>
<td>Rst V [/+ 0% V<, +/- 4% V<, 95%NomVol]</td>
<td></td>
</tr>
<tr>
<td>Avg V></td>
<td>[V]</td>
</tr>
<tr>
<td>V Trp BO</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
<tr>
<td>V Unb</td>
<td></td>
</tr>
<tr>
<td>V Unb [%Un]</td>
<td></td>
</tr>
<tr>
<td>V< Pos [%Un]</td>
<td></td>
</tr>
<tr>
<td>V> Neg [%Un]</td>
<td></td>
</tr>
<tr>
<td>V Unb Del</td>
<td>[s]</td>
</tr>
<tr>
<td>V Unb Trp BO</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
<tr>
<td>PhaseRotation</td>
<td>[CW / CCW / ANY]</td>
</tr>
<tr>
<td>Ph Rot Trp BO</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
<tr>
<td>Dyn Volt</td>
<td></td>
</tr>
<tr>
<td>V Lim 1, V Lim 2, V Lim 3</td>
<td>[% Un]</td>
</tr>
<tr>
<td>Delay 1, Delay 2, Delay 3</td>
<td>[s]</td>
</tr>
<tr>
<td>Reset Time</td>
<td>[s]</td>
</tr>
<tr>
<td>DynVoltTrpBO</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
<tr>
<td>QU</td>
<td></td>
</tr>
<tr>
<td>V< [%Un]</td>
<td></td>
</tr>
<tr>
<td>Rst V [%Un]</td>
<td></td>
</tr>
<tr>
<td>I Min</td>
<td></td>
</tr>
<tr>
<td>Q Min [%S]</td>
<td></td>
</tr>
<tr>
<td>QU Del 1</td>
<td>[s]</td>
</tr>
<tr>
<td>QU Del 2</td>
<td>[s]</td>
</tr>
<tr>
<td>QU Trp Gen</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
<tr>
<td>QU Trp Mns</td>
<td>[Trp 1 / Trp 2 / Trp 1+2 / None]</td>
</tr>
</tbody>
</table>

V> , V>>, V<<	[Hz]	28
V> del , V>> del , V<< del	[s]	28
Rst V<	[100% V< / +0,2% V< / 47,5 Hz]	29
Rst V>	[100% V> / -0,2% V> / 50,05 Hz]	29
f Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	29

LOM	29
Ve Lin	[*]	29
ROCOF	[Hz/s]	29
ROCOF filt	[-]	29
LOM Init Del	[s]	30
LOM Trip Del	[s]	30
LOM Trip BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	30

I>	30
I>, I>>, I<<	[%In]	30
I> Del , I>> Del	[s]	30
I> Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	30

I> T	31
I> T Del	[s]	31
I> T Curve		31
I> T Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	31

I> V	31
I> V Del	[s]	31
I> V Curve		31
I> V Control	[%Un]	31
I> V Restraint	[DISABLED / ENABLED]	31
I> V Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	31

I UNb	32
I UNb	[%In]	32
I MinDiffEval	[%In]	32
I UNb Del	[s]	32
I> V Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	32

DOC	32
NominGenCurr	[A]	32
DOC>	[%In]	32
DOC> Del	[s]	32
DOC Test	[DISABLED / ENABLED]	32
DOC Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	33

EFC	33
EFC> Lim	[%In]	33
EFC> Del	[s]	33
EFC> T Lim	[%In]	33
EFC> T Del	[s]	33
EFC> T Curve		33
EFC Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	34

IGS	34
IGS> Lim	[mA]	34
IGS> Del	[s]	34
IGS> T Lim	[mA]	34
IGS> T Del	[s]	34
IGS> T Curve		34
IGS Trp BO	[Trp 1 / Trp 2 / Trp 1+2 / None]	34

| NVD | | 35 |
| NVD> | [V] | 35 |
CU Analog In ... 41
MaxParallTime ... 40
Pole Slip ... 40
AC Reclosing... 40

NVD> Del [s] ... 35
NVD>> [V].. 35
NVD>> Del [s] ... 35
Rst NVD.. 35
NVD Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None] ... 35
P... 35
P> Del, P>> Del [s] .. 35
P> Direction, P>> Direction [UNDER / OVER] .. 36
P Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]... 36
Mains Pwr 1...8 [%Pn] .. 36
Filter Delay [s] ... 36

PF.. 36
Ind PF limit [-] ... 36
Ind PF Del [s] ... 36
Cap PF limit [-] .. 37
Cap PF Del [s] ... 37
PF Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]... 37
Sync Check .. 37
Upper V Lim [%Un].. 37
Lower V Lim [%Un]... 37
Voltage Window [%Un] .. 37
Phase Window [*] .. 37
Freq Window [Hz] ... 38
Dwell Time [s] .. 38
DeadVm HotVsc [ENABLED / DISABLED] .. 38
HotVm DeadVsc [ENABLED / DISABLED] .. 38
DeadVm DeadVsc [ENABLED / DISABLED] .. 38
Block By AR [ENABLED / DISABLED] .. 38
Dead V Lim [%Un] .. 38
Dead T Del [s] .. 39
SyncC Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None] ... 39
AC Reclosing... 39
AR Delay [s] .. 39
Rec Initiate [Common / Trp 1 / Trp 2] .. 39
No.AC Reclose [-] ... 39
AC Rec Timer [s] ... 39
AC Rec FR Del [s] .. 40

Pole Slip.. 40
Gear Teeth [-] ... 40
Nominal RPM [-] ... 40
Pole Slip Lim [*] .. 40
PS Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None] .. 40

MaxParallTime .. 40
MaxParallTime [s] ... 40
MaxPT Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None] .. 40

CU Analog In ... 41
CU A1f Wn, CU A12 Wn, CU A13 Wn.. 41
CU A1 Trp, CU A12 Trp, CU A13 Trp .. 41
CU A1 Del, CU A12 Del, CU A13 Del [s] ... 41
CU A1 BlockBl, CU A12 BlockBl, CU A13 BlockBl [Block 1 / Block 2 / Block 1+2 / None] 41

IOM Analog In ... 41
IOM A1 Wn, IOM A12 Wn, IOM A13 Wn, IOM A14 Wn.. 41
IOM A1 Trp, IOM A12 Trp, IOM A13 Trp, IOM A14 Trp.. 41
IOM A1 Del, IOM A12 Del, IOM A13 Del, IOM A14 Del [s] .. 41
IOM A1 BlockBl, IOM A12 BlockBl, IOM A13 BlockBl, IOM A14 BlockBl [Block 1 / Block 2 / Block 1+2 / None] 41

4-6
InteliPro, SW version 1.6, ©ComAp – November 2014
InteliPro 1.6 Comprehensive Guide
InteliPro 1.6 Comprehensive Guide
InteliPro, SW version 1.6, ©ComAp – November 2014
InteliPro 1.6 Comprehensive Guide

Technical data .. 50
List of EMC tests .. 49
List of Values .. 46
Library of alarm messages ... 44

Recommended CAN cables .. 53
Relay Card CT2-REL2 .. 52
Interface to other controllers .. 52
Extesion modules interface ... 52
Remote communication interface ... 52
NVD and Sync Check measurement .. 51
Mains measurements .. 51
Mains Power ... 46
LOM... 47
NVD ... 47
Sync Check .. 47
Pole Slip .. 47
Controller I/O ... 47
Extension I/O .. 48
Statistics .. 48
Date/Time .. 42
InteliPro Info .. 48

List of EMC tests .. 49

Power supply ... 50
Operating conditions .. 50
Physical dimensions .. 50
Standard conformity .. 50
Binary inputs ... 50
Binary outputs .. 51
Analog inputs .. 51
Mains measurements .. 51
NVD and Sync Check measurement .. 51
Remote communication interface ... 52
Extesion modules interface ... 52
Interface to other controllers .. 52
Relay Card CT2-REL2 .. 52
Recommended CAN cables .. 53

Wrn Alarm Msg [OFF/ ON] .. 42
Trp Alarm Msg [OFF/ ON] .. 42
TelNo/Addr Ch1, TelNo/Addr Ch2 ... 42
Date/Time .. 42
TimeStamp Per [min] .. 42
#SummerTimeMod [DISABLED / WINTER / SUMMER, WINTER-S, SUMMER-S] 42
#Time [HHMMSS] .. 42
#Date [DDMMYY] .. 42
Sensors Spec .. 43
AI1Calibration, AI2Calibration, AI3Calibration, IOM AI1 Calibr, IOM AI2 Calibr, IOM AI3 Calibr, IOM AI4 Calibr .. 43

Date/Time .. 42
Statistics .. 48
TelNo/Addr Ch1, TelNo/Addr Ch2 ... 42
Trp Alarm Msg [OFF/ ON] .. 42
Wrn Alarm Msg [OFF/ ON] .. 42

AI1Calibration, AI2Calibration, AI3Calibration, IOM AI1 Calibr, IOM AI2 Calibr, IOM AI3 Calibr, IOM AI4 Calibr
Library of binary inputs

Binary alarm and functional input configuration items

Binary Alarm configuration items:

- To configure an alarm on a binary signal, check this radio button.
- Select the alarm type according to the table below.
- Select whether the alarm activates on opening (NC) or at closing (NO) of the input.

Functional input configuration items:

- To configure a function on a binary signal, check this radio button.
- Select whether the function activates on opening (NC) or at closing (NO) of the input.

Alarm

If the input is closed (or opened), the configured binary alarm is activated.

Alarm types:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>No trip, in case of activation, warning appears in the alarm list</td>
</tr>
<tr>
<td>Comm Trp</td>
<td>Only Comm Trp output is activated in case of binary alarm</td>
</tr>
<tr>
<td>Trp 1</td>
<td>Trp 1 output is activated in case of binary alarm</td>
</tr>
<tr>
<td>Trp 2</td>
<td>Trp 2 output is activated in case of binary alarm</td>
</tr>
</tbody>
</table>
Setting | Explanation
--- | ---
Trp 1+2 | Both Trp 1 and Trp 2 outputs are activated in case of binary alarm

CB1 Feedback
This input indicates, whether the circuit breaker CB1 is open or closed. It is expected that this breaker opens in case of CommTrp and Trp 1 activation. If it is configured in the unit and it does not open, CB1 fail is indicated.

In general, this breaker corresponds to the "Mains Circuit Breaker" = MCB in the ComAp controllers applications. Together with CB2 it indicates, whether the installation is in "parallel to mains" state (both CB1 Feedback and CB2 Feedback are closed) or in island mode (one or both of CB1 Feedback or CB2 Feedback are open).

CB2 Feedback
This input indicates, whether the circuit breaker CB2 is open or closed. It is expected that this breaker opens in case of Trp 2 activation. If it is configured in the unit and it does not open, CB2 fail is indicated.

This breaker can, but does not necessarily have to correspond to the "Generator Circuit breaker" = GCB as used in the ComAp controllers applications. In such case, together with CB1 it indicates, whether the installation is in "parallel to mains" state (both CB1 Feedback and CB2 Feedback are closed) or in island mode (one or both of CB1 Feedback or CB2 Feedback are open).

F.R. Button
Activation of this binary input causes fault reset. The input has the same effect as pushing the Fault Reset button. If permanently activated, every 100ms an impulse to reset the fault is sent internally within the unit.

DC TripCircuit
Evaluation of DC trip circuit state. When the input closes, history record is made and a message "Wrn DCTripCirc" appears in the Alarmlist.

Access Lock
If the input is closed, no setpoints can be adjusted from controller front panel.

Hint: Access lock does not protect setpoints from LiteEdit. To avoid unqualified changes the selected setpoints can be password protected.

Ext MF Relay
The input serves for reading the state of external mains failure relay for the purpose of controlling the NVD protection stage. Its activation means that the external relay has detected a mains failure. If the input is active, NVD trip outputs are blocked. To unblock the NVD protection, it is necessary not only to deactivate the Ext MF Relay input, but also to deactivate the feedback of the circuit breaker, which is operated by the NVD protection stage. If the input changes its state, history record is made. There is no Alarmlist record or trip protection connected with this input. See description of this lockout in Neutral Voltage Displacement chapter.

Block 1, Block 2
These inputs are used to disable a certain protection stage. To allow disabling/enabling the protection stage by these inputs, assign them to this protection stage by setpoint Block BI. Enabling the connected protection is delayed by time given by setpoint ProtActiv Del. Please note that the Block inputs trigger immediate fault reset in the moment of their activation and deactivation.
CtrlHBeat sens
This input is used to control if an appropriate controller is working. This input is wired to the output CtrlHBeat of some controller. In case there is no signal coming from this controller, the binary output CtrlHBeat FD is activated.

CB1 open
Binary input CB1 open is used to remotely open circuit breaker via InteliPro. As soon as this input is activated, the binary output CB1 OFF Man will be activated.

CB1 close
Binary input CB1 close is used to remotely close circuit breaker via InteliPro. As soon as this input is activated, the binary output CB1 ON Man will be activated.
Library of binary outputs

Some binary output signals are provided in both positive and negative logic in order to follow the requirements of the application:

- Due to increased safety requirements, some protective relays require that negative logic is used, assuring that loss off power supply always causes the relay to trip. I.e. the relay contacts are used, with fault-free position maintained in energized state. In case of power supply fail, the unit goes to “fault” indication position. The outputs using negative logic are marked with exclamation mark "!" as the first character of their name.
- In some applications, the negative logic is not a required functionality. The function of opening the circuit breaker in case of loss of power supply is not accepted as a safety point and the safety is assured by different means e.g. in the superior system or within the protection relays intertripping scheme. In such case, the outputs with positive logic (without the exclamation mark) can be used to signal the detected failure state.

Common Alarm

The output closes in case any alarm comes up. The output opens if Fault Reset button is pressed.

Comm Trp

Common output of all built-in protections, activates whenever any of protections trips. Resets automatically when automatic fault reset function is activated, otherwise has to be reset manually using the Fault Reset button.

!Comm Trp

Inverted polarity of the Comm Trp signal.

Bak Comm Trp

Output for back-up CB trip contact. Closes if Comm Trp is active and CB1 Feedback doesn't deactivate within BackupTrip del. Resets automatically when AutoFaultReset function is activated, otherwise has to be reset manually using Fault Reset button. If any of the CB1 Feedback, Bak Comm Trp or !Bak Comm Trp outputs is not configured on any physical input or output, this function is blocked.

!Bak Comm Trp

Inverted polarity of the Bak Comm Trp signal.

Del Comm Trp

Common output for all protections producing delayed pulse of defined length (see Comm Trp Del and Comm Trp Len).

!Del Comm Trp

Inverted polarity of the Del Comm Trp signal.

Trp 1

Trip output assignable to different protection stages by setpoint xxx Trp BO (e.g. V Trp BO). It activates whenever any assigned protection trips. It resets automatically when AutoFaultReset
function is activated otherwise has to be reset manually using Fault Reset button. This output is expected to trip the CB1 breaker, i.e. deactivation of the CB1 Feedback signal is expected after Trip 1.

\textbf{!Trp 1}
Inverted polarity of the Trp 1 signal.

\textbf{Bak Trp 1}
Output for back-up CB1 trip contact. Closes if TRP 1 is active and CB1 Feedback doesn't deactivate within BackupTrip Del. Resets automatically when AutoFaultReset function is activated, otherwise has to be reset manually using Fault Reset button. If any of the CB1 Feedback, Bak Trp 1 or Bak Trp 1 outputs is not configured on any physical input or output, this function is blocked.

\textbf{!Bak Trp 1}
Inverted polarity of the Bak Trp 1 signal.

\textbf{Trp 2}
Trip output assignable to different protection stages by setpoint xxx Trp BO (e.g. V Trp BO). It activates whenever any assigned protection trips. It resets automatically when AutoFaultReset function is activated otherwise has to be reset manually using Fault Reset button. This output is expected to trip the CB2 breaker, i.e. deactivation of the CB2 Feedback signal is expected after Trip 2.

\textbf{!Trp 2}
Inverted polarity of the Trp 2 signal.

\textbf{Bak Trp 2}
Output for back-up CB2 trip contact. Closes if TRP 2 is active and CB2 Feedback doesn't deactivate within BackupTrip Del. Resets automatically when AutoFaultReset function is activated, otherwise has to be reset manually using Fault Reset button. If any of the CB2 Feedback, Bak Trp 2 or Bak Trp 2 outputs is not configured on any physical input or output, this function is blocked.

\textbf{!Bak Trp 2}
Inverted polarity of the Bak Trp 2 signal.

\textbf{U<> Prot}
Separate output for \textit{voltage protection stages}. It is active if any of the protections: undervoltage or overvoltage is active or not acknowledged by Fault Reset.

\textbf{U< Prot}
Separate output for undervoltage protection. Active if the undervoltage protection is active or not acknowledged by Fault Reset.

\textbf{U> Prot}
Separate output for overvoltage protection. Active if the overvoltage protection is active or not acknowledged by Fault Reset.

\textbf{f<> Prot}
Separate output for \textit{frequency protection stages}. It is active if any of the frequency protection stages (underfrequency, overfrequency) is active or not acknowledged by Fault Reset.
f< Prot
Separate output for underfrequency protection. Active if the underfrequency protection is active or not acknowledged by Fault Reset.

f> Prot
Separate output for overfrequency protection. Active if the overfrequency protection is active or not acknowledged by Fault Reset.

V Unb Prot
Separate output for voltage unbalance protection.

V<Pos
Separate output for positive sequence undervoltage protection.

V>Neg
Separate output for negative sequence overvoltage protection.

PhaseRot Prot
Separate output for phase sequence protection.

VectorS Prot
Separate output for vector shift protection.

ROCOF Prot
Separate output for ROCOF protection.

DOC Prot
Separate output for directional overcurrent protection.

P Prot
Separate output for mains reverse power protection.

PF Prot
Separate output for power factor protection. It is active if any of the protections: inductive or capacitive power factor is active or not acknowledged by Fault Reset.

Ind PF Prot
Separate output for inductive power factor protection. Active if the inductive power factor protection is active or not acknowledged by Fault Reset.

Cap PF Prot
Separate output for capacitive power factor protection. Active if the capacitive power factor protection is active or not acknowledged by Fault Reset.

I> Prot
Separate output for overcurrent (ANSI 50 and 51) protection.

NVD> Prot
Separate output for 1st stage of neutral voltage displacement protection.
!NVD> Prot
Separate output for inverted signal of 1st stage of Neutral Voltage Displacement protection.

NVD>> Prot
Separate output for 2nd stage neutral voltage displacement protection.

!NVD>> Prot
Separate output for inverted signal of 2nd stage of Neutral Voltage Displacement protection.

EFC Prot
Separate output for earth fault current (ANSI 50N and 51N) protection.

IGS Prot
Separate output for ground surge current (ANSI 50GS and 51GS) protection.

I Unb Prot
Separate output for current unbalance protection.

DC Healthy
The output is closed all the time when auxiliary voltage is within the limits (Aux protect: Aux >V and Aux protect: Aux <V). The output opens when Aux voltage is failed or out of setpoint limits.

Watchdog
This output is activated when Watchdog event occurs. The alarm message “Wrn Watchdog” is displayed and the output Watchdog stays opened after the controller’s restart due to watchdog reset of the controller until the Fault Reset button is pushed.

Ctrl HeartBeat
The output provides alternating signal with rate 500 ms active / 500 ms inactive while the unit is in operation. If the output does not provide the signal it may indicate that the unit is switched off, damaged, the firmware is incorrect or missing, or Watchdog is activated.

MaxParTime
Separate output of the short term parallel protection closes after the timer MaxParallTime has elapsed and both CB1 Feedback and CB2 Feedback remain closed.

!MaxParTime
Separate output for inverted signal of short term parallel protection.

U Sig
Signalling output of "out of limit" voltage according to the setting in V<> group.
Activates immediately in the moment of fault conditions (does not wait until delay times out).
Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

f Sig
Signalling output of "out of limit" frequency according to the setting in f<> group.
Activates immediately in the moment of fault conditions (does not wait until delay times out).
Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.
U Unb Sig
Signalling output of voltage unbalance according to the setting of V Unb group.
Activates immediately in the moment of fault conditions (does not wait until delay times out).
Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

LOM Sig
Signalling of protection stages Vector Shift or ROCOF according to the setting in LOM group.
Activates immediately in the moment when fault conditions are detected. Deactivates after LOM Trip Del has elapsed. Fault reset has no effect on this output.

I> Sig
Signalling of overcurrent protections stages according to the setting in I>, I> T and I> V group.
Activates immediately in the moment of fault conditions (does not wait until delay times out).
Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

I Unb Sig
Signalling of current unbalance according to the setting in I Unb group. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

DOC Sig
Signalling of directional overcurrent protection. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

DOC Test
Test output for directional overcurrent protection. When the setpoint DOC Test is set to ENABLED, the directional overcurrent protection activates this output even if standard activating conditions are not fulfilled. This is to allow full quadrant range test of this protection – this output stays active all the time the protection senses the corresponding quadrant and magnitude of the current. **Activating DOC test does blocks the regular function of the ANSI 67 directional overcurrent protection stage!**

EFC >Sig
Signalling of earth fault over current condition according the setting in EFC group. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

IGS > Sig
Signalling of ground surge protection according the setting in IGS group. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

NVD Sig
Signalling of neutral voltage displacement conditions according the setting in NVD group. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

P Sig
Signalling of out off limit power according the setting in P group. Activates immediately in the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.
PF Sig
Signalling output of "out of limit" power factor according to the setting in PF group. Activates immediately at the moment of fault conditions (does not wait until delay times out). Deactivates in the moment when the measured values are back in limits. Fault reset has no effect on this output.

Sync Check
Binary output related to ANSI 25 Synchro check. The output is active in either of the following cases:
- voltage, frequency and phase condition are met and dwell time is over according to the setting in Sync Check group
- connection to dead line or bus are enabled and the voltage is under Dead Voltage limit for the dwell time

AC Reclosing
Binary output related to ANSI 79 AC Reclosing. The output closes AR Delay after power-up of the unit. The output opens immediately when the appropriate trip event appears. The trip, which is considered for the reclosing function is selected by the setpoint AC Reclosing: Rec Initiate. The output closes again with the pre-set delay after the trip state terminates.

CB1 Protection
The output is normally energized for the complete duration of the unit operation. It de-energizes immediately after CB1 Feedback goes from activated position to zero. It keeps de-activated for Basic settings: CB1 Prot Timer.

CB2 Protection
The output is normally energized for the complete duration of the unit operation. It de-energizes immediately after CB2 Feedback goes from activated position to zero. It keeps de-activated for Basic settings: CB2 Prot Timer.

Self Test
This input indicates normal operation of the unit.
the output is closed:
- after power-up of the unit, when the SW application starts successfully and watchdog was not detected.
- If the watchdog was detected, the watchdog alarm is set. In this case, the output closes only after fault reset, when the watchdog alarm is cleared.
- when the auxiliary voltage is restored over Aux Low level state.
the output is open:
- when power fail is detected (low auxiliary voltage even)
- in case of watchdog reset
- when the unit is being programmed
- when the unit is switched off

Mains OK
This output indicates that the mains is healthy. The output is closed while all mains electrical parameters are in limits. The output deactivates immediately as soon as any of the mains protections is activated. As soon as all mains parameters are in limits again, the output closes immediately.

Avg V Prot
The output activates in case that average overvoltage protection is activated.

Pole Slip Prot
The output activates in case that the pole slip protection is activated.
Dyn Volt Prot
The output activates in case that the dynamic voltage protection is activated.

CtrlHBeat FD
Output for signalization of the Heartbeat feedback. The output is activated in case there is no Heartbeat signal from an appropriate controller coming to the binary input CtrlHBeat sens.

QU Gen Prot
Separate output for the “QU” protection to open the GCB.

QU Mns Prot
Separate output for the “QU” protection to open the MCB

CB1 ON Man
Binary output CB1 ON MAN provides 2 seconds long pulse for closing coils of the circuit breaker.

CB1 OFF Man
Binary output CB1 OFF MAN provides pulse for opening coils of the circuit breaker. The pulse lasts until the CB feedback deactivates, but its minimum length is 2 seconds.

CB1 UV Coil
The CB1 UV Coil output is used for control of undervoltage coils of circuit breakers and is active the whole time when gen-set is running (circuit breaker is closed) or the controller is switched on, and deactivates for the time determined by the length of the CB OFF Man output activation.

AL Alx Wrn/Trp, AL IOM Alx Wrn/Trp
The outputs are available to indicate warning or trip, caused by any of the analog inputs on InteliPro unit, or on IOM extension module, where ”x” marks the number of the analog input. The output is activated in the moment when the appropriate AI warning/trip event is issued and stays activated until the alarm message disappears from the alarm list.

AL Aux Volt
The output activates in case of the Warning-type alarm of the power supply over- or undervoltage.

AL Common Wrn
The output activates in case of any Warning-type alarm.

AL Common Fls
The output activates in case of any sensor-fail on the analog inputs.

Alx Wrn/Trp Sig, IOM AlxWrn/Trp Sig
The outputs are activated in the moment when the appropriate protection threshold is exceeded without any delay. The outputs stay active all the dime when faulty condition last. The outputs deactivate when the AI value gets back within limits. Fault reset has no effect on these outputs.

BIx Status, IOM BIx Status
The outputs correspond to the status of the physical inputs of the unit or the IG-IOM or IGS-PTM extension module respectively.

RemoteControl1 - 8
Eight logical binary outputs, controlled via communication:
RemoteControl1
RemoteControl2
RemoteControl3
RemoteControl4
RemoteControl5
RemoteControl6
RemoteControl7
RemoteControl8

These outputs are controlled remotely by setting the value of communication object 10627 RemoteControl via communication. It is also possible to control them from InteliMonitor PC application.

Mains Pwr 1 - 8
Eight logical binary outputs activated if limits set in appropriate setpoints “Mains Pwr 1-8” in the group “P” are violated.
Mains Pwr 1
Mains Pwr 2
Mains Pwr 3
Mains Pwr 4
Mains Pwr 5
Mains Pwr 6
Mains Pwr 7
Mains Pwr 8
Library of setpoints

Password protection
Each setpoint can be protected by password against unauthorized change. The password protection can be assigned to the setpoints during the configuration procedure. See the chapter Control and navigation Pushbuttons - basic operation for instructions how to enter and modify password. See also LiteEdit help to learn about working with password in LiteEdit.

Basic Settings

ControllerName
User defined name, used for InteliPro identification. ControllerName is max 14 characters long and has to be entered manually using LiteEdit software.
Default setting: InteliPro

Mains CT Ratio [A/5A]
Mains current transformers ratio.
Step: 1 A/5A
Range: 1 – 25000 A/5A
Default setting: 400 A/5A

Mains CT Polar [FORWARD / REVERSE]
In case the current transformers are wired with an opposite polarity and the change of the wiring is not possible the user can switch the sign to the “right” (opposite) polarity in order to have the correct direction. This will influence the sign of all variables related to current measurement.
FORWARD: does not have any effect on the measured current, use in case of correct wiring
REVERSE: the sign of the measured current will be switched, use in case of opposite wiring
Default setting: FORWARD

EF CT Ratio [A/5A]
Current transformer ratio for earth fault current.
Step: 1 A/5A
Range: 1 – 8000 A/5A
Default setting: 400 A/5A

Mains PT Ratio [V/V]
Mains potential (voltage) transformers ratio.
Step: 0,01 V/V
Range: 0,01 – 500,00 V/V
Default setting: 1,00 V/V

Gen PT Ratio [V/V]
Generator potential (voltage) transformer ratio.
Step: 0,1 V/V
Range: 0,1 - 500,0 V/V
Default setting: 1,0 V/V

NomVolts Ph-N [V]
Nominal mains voltage (phase to neutral).
Step: 1 V
Range: 80 – 23094 V
Default setting: 231 V
NOTE:
If the value of NomVolts Ph-N is changed, the value of NomVolts Ph-Ph is automatically recalculated and stored in NomVolts Ph-Ph setpoint.

NomVolts Ph-Ph [V]
Nominal mains voltage (phase to phase).
Step: 1 V
Range: 80 – 40000 V
Default setting: 400 V

NOTE:
If the value of NomVolts Ph-Ph is changed, value of NomVolts Ph-N is automatically recalculated and stored in NomVolts Ph-N setpoint.

Nominal Freq [Hz]
Nominal mains frequency.
Step: 1 Hz
Range: 45 – 65 Hz
Default setting: 50 Hz

Nominal Power [kW]
Nominal power of the protected mains feeder.
Step: 1 kW
Range: 0 – 32000 kW
Default setting: 200 kW

NominMainsCurr [A]
Nominal mains feeder current. Serves for Ishort and Earth Fault current protections’ evaluation.
Step: 1 A
Range: 0 - 32000 A
Default setting: 288 A

Voltage Setup [Ph To N / Ph To Ph]
Method of voltage evaluation. Setting of this setpoint indicates, whether the voltage protections and control functions are calculated from phase-to-neutral or phase-to-phase voltage.
Ph To N protection is based on phase-to-neutral voltage evaluation
Ph To Ph protection is based on phase-to-phase voltage evaluation
Default setting: Ph To N

NOTE:
Setting of this setpoint influences evaluation methods of the following protection stages:
- Sync Check (ANSI 25)
- Time Over Current With Voltage Control (ANSI 51V)
- Over Voltage (ANSI 59)
- Under Voltage (ANSI 27)
- Volt (Un)Balance (ANSI 47)

CB1 Prot Timer [s]
Setting of the CB1 Protection timer. For this time after CB1 Feedback de-energization, the output CB1 Protection keeps in de-energized state to prevent premature breaker closing. After this time it goes back to energized state.
Step: 1 s
Range: 1 - 60 s
0 = OFF, CB1 protection function is disabled
Default setting: 0 s

CB2 Prot Timer [s]

Setting of the CB2 Protection timer. For this time after CB2 Feedback de-energization, the output CB2 Protection keeps in de-energized state to prevent premature breaker closing. After this time it goes back to energized state.

- **Step:** 1 s
- **Range:** 1 - 60 s
- **0 = OFF, CB2 protection function is disabled**

Default setting: 0 s

Start Trip [DISABLED / ENABLED]

InteliPro supports start into the TRIP state after re-connection of the power supply if the setpoint Start Trip is set to ENABLED. The unit goes to TRIP state immediately after the auxiliary power is restored. If all values are within their limits, it is possible to perform Fault Reset when the FR Del time is up. If there is a fault present, it must be cleared first, then the Fault Reset performed and only then the outputs are set to fault-free state.

If disabled, the unit will after power supply restoration return to fault-free state.

- **DISABLED:** function is disabled
- **ENABLED:** function is enabled

Default: DISABLED

Comms Settings

Contr. Addr

Unit identification address number. In case of connection to CAN bus together with other ComAp controllers, different address than that of the controllers has to be entered.

- **Range:** 1 - 32
- **Default:** 1

COM1 Mode [DIRECT / MODEM / MODBUS]

Switch, defining what protocol/mode of communication is used on the plug-in communication module.

- **DIRECT:** InteliPro (LiteEdit) communication protocol
- **MODEM:** Analog or GSM modem
- **MODBUS:** InteliPro Modbus protocol

Default setting: DIRECT

NOTE:

For a module, providing 2 communication channels, this switch defines the communication on the first channel (RS232 in case of IL-NT RS232-485).

COM2 Mode [DIRECT / MODEM / MODBUS]

Switch, defining what protocol/mode of communication is used on the second communication channel of a plug-in communication module.

- **DIRECT:** InteliPro (LiteEdit) communication protocol
- **MODEM:** Analog or GSM modem
- **MODBUS:** InteliPro Modbus protocol

Default setting: DIRECT

NOTE:

For a module, providing 2 communication channels, this switch defines the communication on the second channel (RS485 in case of IL-NT RS232-485).
ModemIniString
Auxiliary modem initialization string – executed after the default modem initialization string in case of modem communication.

ModbusComSpeed **[9600 / 19200 / 38400 / 57600 bps]**
Adjusting of the speed of Modbus communication
Default setting: 9600 bps

CAN Bus Mode **[32C / 8C]**
CAN bus speed selection. Use this setpoint in case that you operate InteliPro together with other ComAp controllers connected via CAN bus.
32C: High speed CAN (250 kbps) applicable up to 32 controllers, CAN bus length limited up to 200 meters.
8C: Low speed CAN (50 kbps) applicable up to 8 controllers, CAN bus length limited up to 900 meters.
Default setting: 32C

IBLite IP Addr
IP address of IB-Lite module

IBLite NetMask
IB-Lite network mask

IBLite GateIP
IP address of gateway for IB-Lite

IBLite DHCP
automatic IP address assignment through DHCP server

IP Addr Mode
FIXED or AUTOMATIC mode of IP address assignment

ComAp Port
Port for ComAp communication over IB-Lite or IL-NT-GPRS module

APN Name
name of APN access point for GPRS network.

APN UserName
user name for APN access point.

APN UserPass
user password for APN access point.

AirGate
Communication mode of internet connection

HINT:
All 3 setpoints above shall be provided by GSM/GPRS operator.

AirGate
Communication mode of internet connection

HINT:
You should disable AirGate mode in case you would like to use standard internet connection using IP address.
AirGate IP
IP address of AirGate server (used in AirGate mode)

SMTP UserName
User name or name of e-mail account for verification of e-mail sender on SMTP server. If parameter left empty, no verification is expected. Works for IB-Lite only.

SMTP UserPass
User password of e-mail account for verification of e-mail sender on SMTP server. If parameter left empty, no verification is expected. Works for IB-Lite only.

SMTP Server IP
IP address of SMTP server. Works for IB-Lite only.

Contr MailBox
E-mail address used as “Sender” of alarm e-mails from IB-Lite

Time Zone
List of time zones used for time reference.

DNS IP Address
IP address of Domain Name Server.

General
This group contains general setting of the unit and its protective functions.

ProtActiv Del [s]
Common delay to activate for the protection stages set to PARALLEL after CB1 Feedback and CB2 Feedback inputs are closed. The delay applies in case of deactivation of Block 1 or Block 2 inputs at the protection stages that are blocked by these inputs.
Step: 0,1 s
Range: 0 – 30 s
Default setting: 2,0 s

BackupTrp Del
Time period reserved for circuit breaker opening. If trip event occurs and the appropriate CB Feedback does not deactivate within this period, the breaker is considered as “failed to open”. Bak Com Trp output is activated and in case that the functionality of CB backup are set-up, the appropriate actions are taken.
Step: 0,01 s
Range: 0,00 – 10,00 s
Default setting: 2,00 s

Comm Trp Del
Delay for Del Comm Trp output.
Step: 0.1 s
Range: 0.0 – 20.0 s
Default setting: 0,0 s

HINT:
If SMTP server requires verification of sender, e-mail address has to be registered to SMTP server and setpoints “SMTP UserName” and “SMTP UserPass” has to be setted to correct values.
Comm Trp Len
Length of pulse on Del Comm Trp output after Comm Trp Del.
Step: 0.1 s
Range: 0.1 – 20.0 s
Default setting: 1.0 s

Auto FR [DISABLED / ON DEACT / CB1+CB2=0 / NOFAULT+DEL]
Setting of automatic fault reset functionality.
DISABLED: AutoFaultReset is disabled
ON DEACT: if at least one of the inputs CB1 Feedback or CB2 Feedback is deactivated,
AutoFaultReset is issued immediately
CB1+CB2=0: if both CB1 Feedback and CB2 Feedback are deactivated, AutoFaultReset is issued immediately
NOFAULT+DEL: AutoFaultReset is issued in the moment when the measured values are within their
limits (no fault condition) no alarm is active plus the delay adjusted by AutoFR Del
parameter. The timeout starts after the last protection deactivation. The
NOFAULT+DEL option is the only method, which is not dependent on the state of
CB1 Feedback or CB2 Feedback binary inputs.
Default setting: DISABLED

Auto FR Del [s]
Delay for activation of automatic fault reset function in the mode NOFLT+DEL.
Step: 1 s
Range: 0 – 3600 s
Default setting: 10 s

Prio Switching [DISABLED / CB1 -> CB2 / CB1 <- CB2 / CB1 <-> CB2]
Setpoint indicates the method for priority switching:
DISABLED: no method of priority switching is applied
CB1 -> CB2: CB1 is considered as the primary switch. If the feedback doesn't come in preset
period, Bak Trp 1 is issued and at the same time Trp 2 is issued.
CB1 <- CB2: CB2 is considered as the primary switch. If the feedback doesn't come in preset
period, Bak Trp 2 is issued and at the same time Trp 1 is issued
CB1 <-> CB2: both CBs provide a backup switching for one another. If the CB1 feedback doesn't
come in preset period, Bak Trp 1 is issued and at the same time Trp 2 is issued, if
the CB2 feedback doesn't come in preset period, Bak Trp 2 is issued and at the
same time Trp 1 is issued.
Default setting: DISABLED

IPro-SW Key
Software key unlocking the requested optional SW functions of InteliPro.
Default setting: empty

Note:
This setpoint is not overwritten after FW upgrade. The setpoint is not visible on InteliPro display in
reading mode to avoid confusion of the user. It is possible to edit this setpoint through InteliPro display
and pushbuttons - in this mode it becomes visible. It is however advisable to use LiteEdit for filling-in
the SW Key.

Aux V<>

Aux >V [V]
Warning level for battery overvoltage.
Step: 0.1 V
Range: Aux <V – 40 V
Default setting: 36 V

Aux <V [V]
Warning level for low battery voltage.
Step: 0.1 V
Range: 8 – Aux >V V
Default setting: 18 V

Aux V Del [s]
Delay for battery voltage warnings.
Step: 1 s
Range: 0 - 600 s
Default setting: 5 s

V <>

V>, V>>, V<, V<< [V]
Threshold of 1st and 2nd stage overvoltage and 1st and 2nd stage undervoltage protection respectively.
Step: 1 V
Range: 1 - 34000 V
0 = OFF, the appropriate stage of voltage protection is disabled
Default setting:
- V> 253 V
- V>> 265 V
- V< 200 V
- V<< 184 V

V> Del, V>> Del, V< Del, V<< Del [s]
Delay of the appropriate stage of the voltage protection.
Step: 0.01 s
Range: 0.00 - 600.00 s
Default setting:
- V> Del 1.00 s
- V>> Del 0.50 s
- V< Del 2.50 s
- V<< Del 0.50 s

Rst V [+/- 0% V<> , +/- 4% V<> , 95%NomVol]
Threshold for voltage measurement hysteresis.
Options:
- +/- 0% V<>: no voltage hysteresis is applied
- +/- 4% V<>: increase/decrease of the undervoltage/overvoltage limit by 4% of the limit value
- 95%NomVol: reset value set to 95 % of the nominal voltage
Default setting: +/- 0% V<>
Avg V > [V]
Threshold of the 10 minutes floating average overvoltage.
Step: 1 V
Range: 0 - 34000 V
Default setting: 0
0 = OFF, the appropriate stage of voltage protection is disabled

V Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for voltage protections.
Default setting: None

V Unb

V Unb [%Un]
Threshold of the voltage unbalance (amplitude asymmetry). The value corresponds to the maximum difference between highest and lowest RMS phase voltage of the 3-phase system.
Step: 1 % of nominal voltage
Range: 0 - 150 % of the nominal voltage
0 % = OFF the amplitude voltage asymmetry is disabled
Default setting: 20%

V< Pos [%Un]
Undervoltage limit of the positive sequence.
Step: 0,1 %Un
Range: 0,0 – 100,0 % Un
Default: 1,0 % Un

V> Neg [%Un]
Overvoltage limit of the negative sequence.
Step: 0,1 %Un
Range: 0,0 – 100,0 % Un
Default: 1,0 % Un

V Unb Del [s]
Delay of the voltage unbalance (amplitude asymmetry) protection.
Step: 0,01 s
Range: 0,00 - 600,00 s
Default setting: 5,00 s

V Unb Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for voltage asymmetry protection.
Default setting: None

PhaseRotation [CW / CCW / ANY]
Direction of correct phase rotation.
CW: clockwise
CCW: counter-clockwise
ANY: The protection is blocked, any phase rotation is possible
Default setting: CW
Ph Rot Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for phase rotation protection.
Default setting: None

Dyn Volt

V Lim 1, V Lim 2, V Lim 3 [% Un]
Voltage limits determining the Dyn Volt Prot curve.
Step: 1 %Un
Range: 0 - 100 %Un
Default setting:
- V Lim 1 30%Un
- V Lim 2 70%Un
- V Lim 3 90%Un

Delay 1, Delay 2, Delay 3 [s]
Time delays determining the Dyn Volt Prot curve.
Step: 0,01 s
Range: 0,01 – 10,00 s
Default setting:
- Delay 1 0,15 s
- Delay 2 0,70 s
- Delay 3 1,50 s

Reset Time [s]
Time delay after which the protection starts to follow the curve from the beginning.
Step: 0,01 s
Range: 0,00..10,00 s
Default setting: 2,00 s

DynVoltTrpBO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for Dynamic Voltage protection.
Default setting: None

QU

V< [%Un]
Threshold for voltage measurement
Step: 1 %Un
Range: 80 – 90 %Un
Default setting: 85 %Un

Rst V< [%Un]
Threshold for voltage measurement hysteresis
Step: 1 %Un
Range: 90 – 100 %Un
Default setting: 95 %Un
I Min [\%\text{In}]
Threshold for current measurement
Step: 1 \%\text{In}
Range: 2 – 20 \%\text{In}
Default setting: 10 \%\text{In}

Q Min [\%\text{S}]
Threshold for the reactive power measurement
Step: 0,1 \%\text{S}
Range: <-10,0;10,0> \%\text{S}
Default: 5,0 \%\text{S}

QU Del 1 [s]
Time delay for opening the GCB (CB1)
Step: 0,01 s
Range: 0,00 – 1,00 s
Default: 0,50 s

QU Del 2 [s]
Time delay for opening the MCB (CB2)
Step: 0,01 s
Range: 1,00 – 2,00 s
Default: 1,50 s

QU Trp Gen [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for QU protection
Default: None

QU Trp Mns [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for QU protection
Default: None

f<>

f>, f>>, f<, f<< [Hz]
Threshold of 1st and 2nd stage overfrequency and 1st and 2nd stage underfrequency protection respectively.
Step: 0,01 Hz
Range: 0,00 - 70,00 Hz
0 = OFF, the appropriate stage of frequency protection is disabled
Default setting:
- $f>$ 51,5 Hz
- $f>>$ 52 Hz
- $f<$ 47,5 Hz
- $f<<$ 47 Hz

f> del, f>> del, f< del, f<< del [s]
Delay of the appropriate stage of the frequency protection.
Step: 0,01 s
Range: 0,00 - 600,00 s
Default setting:
- \(f> \) Del 90,00 s
- \(f>> \) Del 0,50 s
- \(f< \) Del 20,00 s
- \(f<< \) Del 0,50 s

Rst f< [100% f< / +0,2% f< / 47,5 Hz]
Thresholds for frequency measurement hysteresis.
Options:
 - 100% f<: the threshold is set to the underfrequency limit
 - +0,2% f<: increase of the underfrequency limit by 0,2% of the limit value
 - 47,5 Hz: reset value set to 47,5 Hz
Default setting: 100% f<

Rst f> [100% f> / -0,2% f> / 50,05 Hz]
Thresholds for frequency measurement hysteresis.
Options:
 - 100% f>: the threshold is set to the overfrequency limit
 - -0,2% f>: decrease of the overfrequency limit by 0,2% of the limit value
 - 50,05 Hz: reset value set to 50,05 Hz
Default setting: 100% f>

f Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for frequency protections.
Default setting: None

LOM

Vs Lim [°]
Threshold for activating the Vector shift protection.
Step: 1°
Range: 1 - 50°
0° = OFF the Vector shift protection is disabled
Default setting: 10°

ROCOF [Hz/s]
Threshold for activating the Rate of change of frequency (ROCOF) protection.
Step: 0,01 Hz/s
Range: 0,00 - 10,0 Hz/s
0 = OFF, the ROCOF protection is disabled
Default setting: 0 Hz/s

ROCOF filt [-]
Determinates number of periods considered for evaluating ROCOF protection. Higher number means lower sensitivity and longer evaluation time. Lower number means increased sensitivity and shorter evaluation time.
Step: 1
Range: 1 - 100
Default setting: 5
LOM Init Del \([s]\)
Delay for what the Loss of Mains (LOM, i.e. Vector shift and ROCOF) protection is disabled after applying valid measured voltage (stepping into the operational area of voltage and frequency).
Step: 0,01 s
Range: 0 – 600,00 s
Default setting: 3,00 s

LOM Trip Del \([s]\)
Duration of Loss of Mains (LOM, i.e. Vector shift and ROCOF) protection trip. After this delay, the fault is considered as terminated and Fault reset is possible. In case of automatic fault reset, the timer is started.
Step: 0,01 s
Range: 1 – 3600,00 s
Default setting: 3,00 s

LOM Trp BO \([\text{Trp 1} / \text{Trp 2} / \text{Trp 1+2} / \text{None}]\)
Selection of trip binary output for loss of mains protections.
Default setting: None

\(/>\)

\(I^>, I^{>>} \,[\%\text{In}]\)
1\(^{st}\) and 2\(^{nd}\) threshold for short current evaluation. The level is in percentage of NominMainsCurr.
Step: 1 %
Range: 0 - 1000 %
0 = OFF, the short current protection is disabled
Default setting: 200 %

\(I^> \text{ Del}, I^{>>} \text{ Del} \,[s]\)
Delay for short current protection.
Step: 0,01 s
Range: 0,00 - 10,00 s
Default setting: 0,00 s

\(I^\text{ Trp BO} \,[\text{Trp 1} / \text{Trp 2} / \text{Trp 1+2} / \text{None}]\)
Selection of trip binary output for overcurrent protection.
Default setting: None

\(/>\)

\(I^> \text{ T Del} \,[s]\)
IDMT curve shape selection for ANSI 51 time-overcurrent protection. \(I^> \text{ T Del}\) is the reaction time of IDMT protection for 200% overcurrent (when mains current = 2* NominMainsCurr).
Step: 0,1 s
Range: 0,1 - 20,00 s
Default setting: 1,0 s

\(I^> \text{ T Curve}\)
Selection of which curve will be used for ANSI 51: Time Over Current protection.
IDMT: parametric curve, given by the \(I^> \text{ T Del}\) and NominMainsCurr parameters as described in the chapter time-overcurrent protection.
Mod Inv: moderately inverse curve according to ANSI standard
Very Inv: very inverse curve according to ANSI standard
Ext Inv: extremely inverse curve according to ANSI standard
IECInv: moderately inverse curve according to IEC standard
IECVerInv: very inverse curve according to IEC standard
IECExtInv: extremely inverse curve according to ANSI standard

Default setting: IDMT

I> T Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for time overcurrent protection.
Default setting: None

I> V

I> V Del [s]
IDMT curve shape selection for ANSI 51V time-overcurrent protection with voltage control. I> V Del is the reaction time of IDMT protection for 200% overcurrent when mains current = 2* NominMainsCurr and nominal voltage.
Step: 0,1 s
Range: 0,1 - 20,00 s
Default setting: 1,0 s

I> V Curve
Selection of which curve will be used for ANSI 51V: Time Over Current with voltage control protection.
IDMT: parametric curve, given by the I> T Del and NominMainsCurr parameters as described in the chapter time-overcurrent protection.
Mod Inv: moderately inverse curve according to ANSI standard
Very Inv: very inverse curve according to ANSI standard
Ext Inv: extremely inverse curve according to ANSI standard
IECInv: moderately inverse curve according to IEC standard
IECVerInv: very inverse curve according to IEC standard
IECExtInv: extremely inverse curve according to ANSI standard

Default setting: IDMT

I> V Control [%Un]
The voltage control is applied to the time overcurrent stage under this level. I.e. the overcurrent protection is blocked if the voltage is higher then this setpoint.
Step: 0,1 %
Range: 1,0 - 200,0 %
200 = OFF, the voltage control of overcurrent protection is disabled
Default setting: 200 %

I> V Restraint [DISABLED / ENABLED]
Enabling or disabling voltage restraint of time overcurrent protection. I.e. the overcurrent protection threshold is changed according to the voltage level.
DISABLED: protection disabled
ENABLED: protection enabled
Default setting: DISABLED

I> V Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for time overcurrent protection with voltage control.
Default setting: None
I Unb

I Unb [%In]
Threshold of current unbalance protection. Protection is evaluated as maximum difference between any of the phase currents and the average value of phase currents.
Step: 1 %
Range: 0 - 200 %
Default setting: 50 %

IMinDiffEval [%In]
Minimum limit of measured current in % of nominal current, that the current unbalance is enabled from. The value is evaluated as an average value of all phase currents.
Step: 1 %
Range: 0 - 100 % of NominMainsCurr
Default setting: 50 %

I Unb Del [s]
Delay of current unbalance protection.
Step: 0.1 s
Range: 0.0 - 600 s
Default setting: 5.0 s

I> V Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for current unbalance protection.
Default setting: None

DOC

NominGenCurr [A]
Nominal current of the generator(s) connected to the mains feeder, protected by the InteliPro unit. Serves for directional overcurrent protection evaluation.
Step: 1 A
Range: 1 - 32000 A
Default setting: 288 A

DOC> [%In]
Threshold for directional overcurrent evaluation as the % level of NominGenCurr.
Step: 1 %
Range: 0 - 150 %
0 = OFF, the directional overcurrent protection is disabled
Default setting: 50 %

DOC> Del [s]
Delay for directional overcurrent.
Step: 0.1 s
Range: 0.0 - 30 s
Default setting: 5.0 s

DOC Test [DISABLED / ENABLED]
Enables/disables the testing mode of directional overcurrent protection. When ENABLED, the output DOC TEST shows the sensing of the protection regardless of other protection enabling/disabling
conditions. **Activating DOC test blocks the regular function of the ANSI 67 directional overcurrent protection stage!**

DISABLED: protection test disabled

ENABLED: protection test enabled Enabling the DOC test does blocks the regular function of the ANSI 67 directional overcurrent protection stage!

- **Default setting:** DISABLED

DOC Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for directional overcurrent protection.
Default setting: None

EFC

EFC> Lim [%In]
Threshold for ANSI 50N earth fault instantaneous overcurrent protection indicated in % of NominMainsCurr.
Step: 1 %
Range: 0 - 300 %
0 = OFF, the earth fault overcurrent protection is disabled
Default setting: 30 %

EFC> Del [s]
Delay for ANSI 50N earth fault instantaneous overcurrent protection.
Step: 0,1 s
Range: 0,0 - 600 s
Default setting: 10 s

EFC> T Lim [%In]
Limit value for ANSI 51N - earth fault time overcurrent IDMT curve. It shifts the curve in current direction. Level is indicated in % of NominMainsCurr.
Step: 1 %
Range: 0 - 300 %
0 = OFF, the earth fault time-overcurrent overcurrent protection is disabled
Default setting: 10 %

EFC> T Del [s]
IDMT curve shape selection. EFC> T Del is the reaction time of IDMT protection for 200% overcurrent (when EarthFaultCurrent = 2 * EFC> T Lim * NominMainsCurr).
Jepopsáno v dokumentu RL.

Step: 0,1 s
Range: 0,1 - 20,00 s
Default setting: 1,0 s

EFC> T Curve
Selection of which curve will be used for ANSI 51N: time earth fault overcurrent.
IDMT: parametric curve, given by the EFC> T Del and EFC> T Lim parameters as described in the chapter time earth fault overcurrent protection.
Mod Inv: moderately inverse curve according to ANSI standard
Very Inv: very inverse curve according to ANSI standard
Ext Inv: extremely inverse curve according to ANSI standard
IECInv: moderately inverse curve according to IEC standard
IECVerInv: very inverse curve according to IEC standard
IECExtInv: extremely inverse curve according to ANSI standard
Default setting: IDMT

EFC Trp BO
[Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for earth fault overcurrent protection.
Default setting: None

IGS

IGS> Lim [mA]
Threshold for ANSI 50GS – ground surge instantaneous overcurrent protection. Level in 0,1 mA.
Step: 0,1 mA
Range: 0,0 – 100,0 mA
0 = OFF, the ANSI 50GS – ground surge instantaneous overcurrent protection is disabled
Default setting: 0 mA

IGS> Del [s]
Delay for ground surge overcurrent protection.
Step: 0,1 s
Range: 0,0 – 600,0 s
Default setting: 10 s

IGS> T Lim [mA]
Limit value for ANSI 51GS – ground surge time-overcurrent IDMT curve. It shifts the curve in current direction. Level is indicated in % of NominMainsCurr.
Step: 0,1 mA
Range: 0,0 – 50,0 mA
0 = OFF, the ground surge time-overcurrent overcurrent protection is disabled
Default setting: 0 mA

IGS> T Del [s]
IDMT curve shape selection. IGS> T Del is the reaction time of IDMT protection for 100 mA ground surge current.
Step: 0,1 s
Range: 0,1 – 20,00 s
Default setting: 1,0 s

IGS> T Curve
Selection of which curve will be used for ANSI 51GS: ground surge overcurrent.
IDMT: parametric curve, given by the IGS> T Del and IGS> T Lim parameters as described in the chapter ground surge time-overcurrent protection.
Mod Inv: moderately inverse curve according to ANSI standard
Very Inv: very inverse curve according to ANSI standard
Ext Inv: extremely inverse curve according to ANSI standard
IECInvv: moderately inverse curve according to IEC standard
IECVerInv: very inverse curve according to IEC standard
IECExtInv: extremely inverse curve according to ANSI standard
Default setting: IDMT

IGS Trp BO
[Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for ground surge overcurrent protection.
Default setting: None

NVD

NVD> [V]
Threshold for neutral voltage displacement evaluation.
Step: 1 V
Range: 0 - 150 V
0 = OFF, the ANSI 59N - neutral voltage displacement protection is disabled
Default setting: 33 V

NVD> Del [s]
Delay for neutral voltage displacement protection.
Step: 1 s
Range: 0 - 300 s
Default setting: 60 s

NVD>> [V]
Step: 1 V
Range: 0 – 500 V
Default setting: 50 V

NVD>> Del [s]
Step: 1 s
Range: 0 – 300 s
Default setting: 1 s

Rst NVD
Threshold for NVD measurement hysteresis.
Options: +/- 0%
Default: +/- 0%

NVD Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for neutral voltage displacement protection.
Default setting: None

P

P>, P>> [%Pn]
Threshold for first or second directional power protection stage respectively, indicated in % of NominMainsPwr. Positive value of power means that the power flows in the direction from mains into the feeder.
Step: 0,01 %
Range: -300,00 – 300,00 %
Default setting: 10,00 %

P> Del, P>> Del [s]
Delay for first or second stage of directional power protection stage respectively.
Step: 0,01 s
Range: 0,00 - 150,00 s
Default setting: 5,00 s
P> Direction, P>> Direction [UNDER / OVER]
Setting of the direction of evaluation of mains-reverse power first or second protection stage respectively.
UNDER: if the power is less then the value of the pre-set limit, the protection trips.
OVER: if the power is higher then the value of the pre-set limit, the protection trips.
Default setting: OVER

Example of a possible setting:
An example of setting of directional power protection is shown on the following case. There is a feeder of nominal power 200 kW. The protection is supposed to trip when the power flows from the generator to the mains, exceeds the value by 100 kW (50 % of nominal power of the protected feeder) and flows for a period of 10 seconds. The setpoints will be adjusted as follows:
P> - 50 % (minus sign due to the power flow to the mains)
P> Del 10 s
P> Direction OVER (the protection must trip when the power exceeds 50 % of the nominal power)

P Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for directional power protection.
Default setting: None

Mains Pwr 1…8 [%Pn]
Eight setpoints assignable to percentage of nominal active power value which activate appropriate binary output in case the measured value exceeds the set limit.
Range: 0-100%
Step: 1%
Default: 0%
0 = OFF

Filter Delay [s]
To avoid hunting of the binary outputs activation and deactivation, adjustable time delay can be assigned to the measured values. Only if the disturbance lasts longer than the pre-set delay, the thresholds set in “Mains Pwr 1…8” setpoints will be violated.
Range: 0-300,0
Step: 0,1
Default: 5,0

PF

Ind PF limit [-]
Adjustable limit for inductive (current is lagging voltage) power factor evaluation. Trip is issued if the measured value falls below the pre-set limit.
Step: 0,01
Range: 0 - 1,00
Default: 0,95

Ind PF Del [s]
Delay for TRIP activation after the inductive power factor limit is violated.
Cap PF limit [-]
Adjustable limit for capacitive (current is leading voltage) power factor evaluation. Trip is issued if the measured value falls below the pre-set limit.
Step: 0,01
Range: 0 - 1,00
Default: 0,95

Cap PF Del [s]
Delay for TRIP activation after the capacitive power factor limit is violated.
Step: 0,1 s
Range: 0 - 60,0 s
Default: 1 s

PF Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for power factor protection.
Default setting: None

Sync Check
Upper V Lim [%Un]
Defines upper limit for the measured voltage, used to enable the Sync Check function. If the voltage is above this limit, it is never evaluated as "in synchronism".
Step: 0,1 %
Range: 100,0 - 120 % of nominal voltage
Default setting: 105,0 %

Lower V Lim [%Un]
Defines lower limit for the measured voltage, used to enable the Sync Check function. If the voltage is under this limit, it is never evaluated as "in synchronism".
Step: 0,1 %
Range: 70,0 - 100,0 % of nominal voltage
Default setting: 95,0 %

Voltage Window [%Un]
Maximum difference between mains and bus voltage measured on the Sync Check input, to be considered as "synchronous" conditions.
Step: 0,1 %
Range: 0,0 - 100,0 % of nominal voltage
Default setting: 2,0 %

Phase Window [°]
Maximum angle between mains and bus voltage measured on the Sync Check input, to be considered as "synchronous" conditions.
Step: 1°
Range: 0 - 90°
Default setting: 10°

Freq Window [Hz]
Maximum frequency difference between mains and bus voltage measured on the Sync Check input, to be considered as “synchronous” conditions.
Step: 0,01 Hz
Range: 0.01 - 5.00 Hz
Default setting: 0,20 Hz

Dwell Time [s]
Minimum time that the mains and bus voltage have to stay within the Voltage Window, Phase Window and Freq Window to be considered as synchronous.
Step: 0,1 s
Range: 0,0 - 25,0 s
Default setting: 2,0 s

DeadVm HotVsc [ENABLED / DISABLED]
Enabling/disabling the synchro-check function of closing “dead” mains to “hot” bus.
ENABLED: situation of dead mains (mains voltage below Dead V Lim) and live bus (Sync Check voltage within limits) is considered as “synchronous” state
DISABLED: situation of dead mains and live bus is not considered as “synchronous” state
Default setting: DISABLED

HotVm DeadVsc [ENABLED / DISABLED]
Enabling/disabling the synchro-check function of closing “live” mains to “dead” bus.
ENABLED: situation of live mains (mains voltage within limits) and dead bus (Sync Check voltage below Dead V Lim) is considered as “synchronous” state
DISABLED: situation of live mains and dead bus is not considered as “synchronous” state
Default setting: DISABLED

DeadVm DeadVsc [ENABLED / DISABLED]
Enabling/disabling the synchro-check function of closing “dead” mains to “dead” bus.
ENABLED: situation of dead mains (mains voltage below Dead V Lim) and dead bus (Sync Check voltage below Dead V Lim) is considered as “synchronous” state
DISABLED: situation of dead mains and dead bus is not considered as “synchronous” state
Default setting: DISABLED

Block By AR [ENABLED / DISABLED]
If enabled, the synchro-check will not evaluate synchronous state until the AC Reclosing output is activated after the trip termination.
ENABLED: The binary output will activate only after the AC Reclosing output is activated
DISABLED: The binary output activates regardless of the state of the AC Reclosing output
Default setting: DISABLED

Dead V Lim [%Un]
Threshold for evaluating the mains or bus voltage as “dead”.
Step: 0,1 % of nominal voltage
Range: 0,0 - 50,0 %
Default setting: 20,0 %
Dead T Del [s]
If the mains or bus voltage stays under the Dead V Lim threshold for longer than this time, the voltage is considered as "dead".
Step: 0,1 s
Range: 0,0 - 150,0 s
Default setting: 5,0 s

SynC Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for synchro check protection.
Default setting: None

NOTE:
In case of setting to None, the sync check function has no influence on trip outputs. If any trip output is selected, then deactivation of that trip output is blocked while the synchronous conditions are not evaluated. When the synchronous conditions are met, the deactivation of the trip output is no longer blocked.

AC Reclosing

AR Delay [s]
Delay for activating the AC Reclosing binary output after fault reset.
Step: 0,01 s
Range: 0,00 - 600,00 s
Default setting: 10,00 s

Rec Initiate [Common / Trp 1 / Trp 2]
Selection of which output is considered as a trigger for the AC reclosing function. Deactivation of this output initiates the counter of AR Delay for reconnecting by the AC Reclosing output.
- Comm Trp: the output Comm Trp is considered the trigger for AC reclosing counter
- Trp 1: the output Trp 1 is considered the trigger for AC reclosing counter
- Trp 2: the output Trp 2 is considered the trigger for AC reclosing counter
Default setting: Comm Trp

No.AC Reclose [-]
Setpoint for setting number of allowed AC Reclose actions. If the pre-set number is exceeded, trip is issued and the relay stays in TRIP stays until fault reset is performed.
Step: 1
Range: 0 - 50
Default setting: 48
0 = OFF

AC Rec Timer [s]
Timer for setting a time interval for the No.AC Reclose setpoint. If the No.AC Reclose reaches its set limit within the time interval set in AC Rec Timer, warning "No.AC Rec" will be displayed and shown in Alarm list and History, the unit will stop reclosing and stays in trip state until fault reset is performed.

When the fault reset is performed, the AC Rec Timer will reset and the countdown will start from zero at the moment when first AC Reclose is performed.
If the number of AC recloses does not reach its limit within the set period, the AC Rec Timer buffer and the No.AC Reclose setpoint will reset and starts from zero at the moment of next AC Reclose.
Step: 1 s
Range: 0 - 65535

InteliPro, SW version 1.6, ©ComAp – November 2014
InteliPro 1.6 Comprehensive Guide
AC Rec FR Del [s]
If configured, setpoint AC Rec FR Del allows to set longer time delay (independent on the regular FR Del) for fault reset when the trip is issued after the last AC Reclose action to allow the personnel to check the situation. Fault reset can be then performed after pre-set time is up.
Step: 1 s
Range: 0 - 65535
Default setting: 0
0 = OFF

Pole Slip

Gear Teeth [-]
Number of teeth on the engine’s (generator’s) flywheel for the pick-up sensor
Step: 1 [-]
Range: 1 - 500
Default setting: 256

Nominal RPM [-]
Number of the machine nominal revolutions per minute
Step: 1 [-]
Range: 100 - 4000
Default setting: 1500

Pole Slip Lim [°]
The load angle limit setting
Step: 1°
Range: 90 - 180
Default setting: 100

PS Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for pole slip protection.
Default setting: None

MaxParallTim

MaxParallTime [s]
Timer of the maximum parallel time protection.
Step: 0,1 s
Range: 0,1 – 1800,0 s
Default setting: 300,0 s

MaxPT Trp BO [Trp 1 / Trp 2 / Trp 1+2 / None]
Selection of trip binary output for maximum parallel time protection.
Default setting: None
CU Analog In

Setpoints in this group are used for protection on DC analog inputs of the unit.

CU Al1 Wrn, CU Al2 Wrn, CU Al3 Wrn

Level of warning type of protection assigned to analog input 1, 2 or 3 of the unit respectively. The step, decimals, range and units are given by configuration of the appropriate output.

CU Al1 Trp, CU Al2 Trp, CU Al3 Trp

Level of trip assigned to analog input 1, 2 or 3 of the unit respectively. The step, decimals, range and units are given by configuration of the appropriate output.

CU Al1 Del, CU Al2 Del, CU Al3 Del [s]

Delay of protections assigned to analog input 1, 2 or 3 of the unit respectively. It is the same for warning alarm and trip.

- **Step:** 1 s
- **Range:** 0 - 600 s
- **Default setting:** 5 s

CU Al1 BlockBI, CU Al2 BlockBI, CU Al3 BlockBI [Block 1 / Block 2 / Block 1+2 / None]

Selection of blocking binary input for protections assigned to analog input 1, 2 or 3 of the unit respectively.

- **Default setting:** None

IOM Analog In

Setpoints in this group are used for protection on DC analog inputs of the extension module IG-IOM or IGS-PTM.

IOM Al1 Wrn, IOM Al2 Wrn, IOM Al3 Wrn, IOM Al4 Wrn

Level of warning type of protection assigned to analog input 1, 2, 3 or 4 of the extension module IG-IOM or IGS-PTM. The step, decimals, range and units are given by configuration of the appropriate output.

IOM Al1 Trp, IOM Al2 Trp, IOM Al3 Trp, IOM Al4 Trp

Level of trip assigned to analog input 1, 2, 3 or 4 of the extension module IG-IOM or IGS-PTM respectively. The step, decimals, range and units are given by configuration of the appropriate output.

IOM Al1 Del, IOM Al2 Del, IOM Al3 Del, IOM Al4 Del [s]

Delay of protections assigned to analog input 1, 2, 3 or 4 of the extension module IG-IOM or IGS-PTM respectively. It is the same for warning alarm and trip.

- **Step:** 1 s
- **Range:** 0 - 600 s
- **Default setting:** 5 s

IOM Al1 BlockBI, IOM Al2 BlockBI, IOM Al3 BlockBI, IOM Al4 BlockBI [Block 1 / Block 2 / Block 1+2 / None]

Selection of blocking binary input for protections assigned to analog input 1, 2, 3 or 4 of the extension module IG-IOM or IGS-PTM respectively.

- **Default setting:** None
SMS/E-Mail

Wrn Alarm Msg [OFF/ ON]
Enables or disables active calls, SMS or e-mail mesages to the selected phone, mobile or e-mail address when a warning alarm occurs.
Default setting: OFF

Trp Alarm Msg [OFF/ ON]
Enables or disables active calls, SMS or e-mail mesages to the selected phone, mobile or e-mail address when trip occurs.
Default setting: OFF

TelNo/Addr Ch1, TelNo/Addr Ch2
2 possibilities of entering phone number or e-mail to which the message will be sent in case that warning or trip occurs.

Date/Time

TimeStamp Per [min]
Time interval for history record. Time base is based on number of minutes since midnight. History records are only made in parallel, if CB1 Feedback and CB2 Feedback are configured and closed, activation delay elapsed and if there is at least one unblocked protection. If CB1 Feedback and CB2 Feedback are not configured, history records are made in case that there is at least one unblocked protection.
Step: 1 min
Range: 0 - 240 min
0 = OFF, TimeStamp event is disabled
Default setting: 30 min

#SummerTimeMod [DISABLED / WINTER / SUMMER, WINTER-S, SUMMER-S]
- **DISABLED**: Automatic switching between summer and wintertime is disabled.
- **WINTER (SUMMER)**: Automatic switching between summer and wintertime is enabled and it is set to winter (summer) season.
- **WINTER-S (SUMMER-S)**: Modification for southern hemisphere.
Default setting: DISABLED

NOTE:
In case of interconnection of InteliPro with other ComAp units on the CAN2 bus, the setpoint is automatically synchronized within the interconnected group.

#Time [HHMMSS]
Real time clock adjustment.

NOTE:
In case of interconnection of InteliPro with other ComAp units on the CAN2 bus, the setpoint is automatically synchronized within the interconnected group.

#Date [DDMMYY]
Actual date adjustment
NOTE:
In case of interconnection of InteliPro with other ComAp units on the CAN2 bus, the setpoint is automatically synchronized within the interconnected group.

Sensors Spec

AI1Calibration, AI2Calibration, AI3Calibration, IOM AI1 Calibr, IOM AI2 Calibr, IOM AI3 Calibr, IOM AI4 Calibr

The value for calibration of the appropriate analog input of the unit or extension module IG-IOM or IGS-PTM. This value is added to the output of analog input curve.
Library of alarm messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActCallCH1Fail</td>
<td>error during sending an SMS to a number stated in the setpoint SMS/E-mail -></td>
</tr>
<tr>
<td></td>
<td>TelNo/Addr Ch1</td>
</tr>
<tr>
<td>ActCallCH2Fail</td>
<td>error during sending an SMS to a number stated in the setpoint SMS/E-mail -></td>
</tr>
<tr>
<td></td>
<td>TelNo/Addr Ch2</td>
</tr>
<tr>
<td>Low BackupBatt</td>
<td>Backup battery is low</td>
</tr>
<tr>
<td>Wrn Aux Volt</td>
<td>over or undervoltage of the power supply</td>
</tr>
<tr>
<td>M L1 neg</td>
<td>phase sequence is correct, L1 is in antiphase</td>
</tr>
<tr>
<td>M L2 neg</td>
<td>phase sequence is correct, L2 is in antiphase</td>
</tr>
<tr>
<td>M L3 neg</td>
<td>phase sequence is correct, L3 is in antiphase</td>
</tr>
<tr>
<td>M ph opposed</td>
<td>opposed phase sequence</td>
</tr>
<tr>
<td>M ph+L1 neg</td>
<td>phase sequence is opposite, L1 is in antiphase</td>
</tr>
<tr>
<td>M ph+L2 neg</td>
<td>phase sequence is opposite, L2 is in antiphase</td>
</tr>
<tr>
<td>M ph+L3 neg</td>
<td>phase sequence is opposite, L3 is in antiphase</td>
</tr>
<tr>
<td>Trp Vm1></td>
<td>trip due to exceeding of the first stage overvoltage in phase 1</td>
</tr>
<tr>
<td>Trp Vm1>></td>
<td>trip due to exceeding of the second stage overvoltage in phase 1</td>
</tr>
<tr>
<td>Trp Vm1<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 1</td>
</tr>
<tr>
<td>Trp Vm1<<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 1</td>
</tr>
<tr>
<td>Trp Vm2></td>
<td>trip due to exceeding of the first stage overvoltage in phase 2</td>
</tr>
<tr>
<td>Trp Vm2>></td>
<td>trip due to exceeding of the second stage overvoltage in phase 2</td>
</tr>
<tr>
<td>Trp Vm2<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 2</td>
</tr>
<tr>
<td>Trp Vm2<<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 2</td>
</tr>
<tr>
<td>Trp Vm3></td>
<td>trip due to exceeding of the first stage overvoltage in phase 3</td>
</tr>
<tr>
<td>Trp Vm3>></td>
<td>trip due to exceeding of the second stage overvoltage in phase 3</td>
</tr>
<tr>
<td>Trp Vm3<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 3</td>
</tr>
<tr>
<td>Trp Vm3<<</td>
<td>trip due to exceeding of the first stage undervoltage in phase 3</td>
</tr>
<tr>
<td>Trp Vm12></td>
<td>trip due to exceeding of the first stage overvoltage between phases 1 and 2</td>
</tr>
<tr>
<td>Trp Vm12>></td>
<td>trip due to exceeding of the second stage overvoltage between phases 1 and 2</td>
</tr>
<tr>
<td>Trp Vm12<</td>
<td>trip due to exceeding of the first stage undervoltage between phases 1 and 2</td>
</tr>
<tr>
<td>Trp Vm12<<</td>
<td>trip due to exceeding of the first stage undervoltage between phases 1 and 2</td>
</tr>
<tr>
<td>Trp Vm23></td>
<td>trip due to exceeding of the first stage overvoltage between phases 2 and 3</td>
</tr>
<tr>
<td>Trp Vm23>></td>
<td>trip due to exceeding of the second stage overvoltage between phases 2 and 3</td>
</tr>
<tr>
<td>Trp Vm23<</td>
<td>trip due to exceeding of the first stage undervoltage between phases 2 and 3</td>
</tr>
<tr>
<td>Trp Vm31></td>
<td>trip due to exceeding of the first stage overvoltage between phases 3 and 1</td>
</tr>
<tr>
<td>Trp Vm31>></td>
<td>trip due to exceeding of the second stage overvoltage between phases 3 and 1</td>
</tr>
<tr>
<td>Trp Vm31<</td>
<td>trip due to exceeding of the first stage undervoltage between phases 3 and 1</td>
</tr>
<tr>
<td>Trp V Unb</td>
<td>trip due to voltage unbalance</td>
</tr>
<tr>
<td>Trp V Neg Seq</td>
<td>trip due to exceeding of overvoltage limit of negative sequence</td>
</tr>
<tr>
<td>Trp V Pos Seq</td>
<td>trip due to exceeding of undervoltage limit of positive sequence</td>
</tr>
<tr>
<td>Event Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Trp fm></td>
<td>trip due to exceeding of the first stage overfrequency</td>
</tr>
<tr>
<td>Trp fm>></td>
<td>trip due to exceeding of the second stage overfrequency</td>
</tr>
<tr>
<td>Trp fm<</td>
<td>trip due to exceeding of the first stage underfrequency</td>
</tr>
<tr>
<td>Trp fm<<</td>
<td>trip due to exceeding of the second stage underfrequency</td>
</tr>
<tr>
<td>Wrn DCTripCirc</td>
<td>evaluation of DC trip circuit state when the input closed</td>
</tr>
<tr>
<td>Trp VectorShift</td>
<td>trip due to activation of vector shift protection</td>
</tr>
<tr>
<td>Trp ROCOF</td>
<td>trip due to activation of rate of change of frequency protection</td>
</tr>
<tr>
<td>Trp DirOC L1</td>
<td>trip due to exceeding of the directional overcurrent limit in phase 1</td>
</tr>
<tr>
<td>Trp DirOC L2</td>
<td>trip due to exceeding of the directional overcurrent limit in phase 2</td>
</tr>
<tr>
<td>Trp DirOC L3</td>
<td>trip due to exceeding of the directional overcurrent limit in phase 3</td>
</tr>
<tr>
<td>Trp NVD></td>
<td>trip due to exceeding of the first stage of neutral voltage displacement</td>
</tr>
<tr>
<td>Trp NVD>></td>
<td>trip due to exceeding of the second stage of neutral voltage displacement</td>
</tr>
<tr>
<td>Wrn DirOC Test</td>
<td>indication during activation of directional overcurrent test</td>
</tr>
<tr>
<td>Trp EFC></td>
<td>trip due to exceeding of earth fault current limit</td>
</tr>
<tr>
<td>Trp IGS></td>
<td>trip due to exceeding of ground surge instantaneous overcurrent limit</td>
</tr>
<tr>
<td>Trp I></td>
<td>trip due to exceeding of first stage overcurrent limit</td>
</tr>
<tr>
<td>Trp I>></td>
<td>trip due to exceeding of second stage overcurrent limit</td>
</tr>
<tr>
<td>Trp I> T</td>
<td>trip due to activation of time-overcurrent protection</td>
</tr>
<tr>
<td>Trp I> V</td>
<td>trip due to activation of time-overcurrent protection with voltage control</td>
</tr>
<tr>
<td>Trp EFC> T</td>
<td>trip due to activation of earth fault time-overcurrent protection</td>
</tr>
<tr>
<td>Trp IGS> T</td>
<td>trip due to activation of ground surge time-overcurrent protection</td>
</tr>
<tr>
<td>Wrn Watchdog</td>
<td>watchdog event occurred</td>
</tr>
<tr>
<td>Trp I Unb</td>
<td>trip due to current unbalance</td>
</tr>
<tr>
<td>Trp MaxParTime</td>
<td>trip due to the parallel conditions has stayed longer than allowed</td>
</tr>
<tr>
<td>Trp P></td>
<td>trip due to the first stage of directional power limit</td>
</tr>
<tr>
<td>Trp P>></td>
<td>trip due to exceeding of the second stage directional power limit</td>
</tr>
<tr>
<td>Trp Vm1 Avg ></td>
<td>trip due to exceeding of the floating average overvoltage limit in phase 1</td>
</tr>
<tr>
<td>Trp Vm2 Avg ></td>
<td>trip due to exceeding of the floating average overvoltage limit in phase 2</td>
</tr>
<tr>
<td>Trp Vm3 Avg ></td>
<td>trip due to exceeding of the floating average overvoltage limit in phase 3</td>
</tr>
<tr>
<td>Trp Pole Slip</td>
<td>trip due to pole slip protection activation</td>
</tr>
<tr>
<td>Trp Dyn Volt</td>
<td>trip due to activation of dynamic voltage protection</td>
</tr>
<tr>
<td>Trp QU Gen</td>
<td>trip of the GCB due to QU protection activation</td>
</tr>
<tr>
<td>Trp QU Mns</td>
<td>trip of the MCB due to QU protection activation</td>
</tr>
<tr>
<td>Sd IOM Fail</td>
<td>error of IOM connection to InteliPro</td>
</tr>
<tr>
<td>Wrn RA Fail</td>
<td>error of RA15 connection to InteliPro</td>
</tr>
<tr>
<td>Wrn BadPwrCfg</td>
<td>a controller with different setting of units of power is connected to CAN</td>
</tr>
<tr>
<td>PS Disabled</td>
<td>condition for correct calibration of Pole slip protection are not fulfilled</td>
</tr>
<tr>
<td>Wrn PS Fail</td>
<td>disturbance on RPM input</td>
</tr>
<tr>
<td>Trp cap PF</td>
<td>trip due to activation of capacitive PF limit protection</td>
</tr>
<tr>
<td>Trp ind PF</td>
<td>trip due to activation of inductive PF limit protection</td>
</tr>
<tr>
<td>No.AC Rec</td>
<td>trip due to reaching the No.AC Reclose limit</td>
</tr>
<tr>
<td>Wrn MCBmanOpen</td>
<td>Remote / manual opening of CB</td>
</tr>
</tbody>
</table>
List of Values

Mains Measured

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Freq</td>
<td>Hz</td>
<td>Mains frequency</td>
</tr>
<tr>
<td>VmL1N</td>
<td>V</td>
<td>L1-neutral voltage</td>
</tr>
<tr>
<td>VmL2N</td>
<td>V</td>
<td>L2-neutral voltage</td>
</tr>
<tr>
<td>VmL3N</td>
<td>V</td>
<td>L3-neutral voltage</td>
</tr>
<tr>
<td>VmL1L2</td>
<td>V</td>
<td>L1-L2 voltage</td>
</tr>
<tr>
<td>VmL2L3</td>
<td>V</td>
<td>L2-L3 voltage</td>
</tr>
<tr>
<td>VmL3L1</td>
<td>V</td>
<td>L3-L1 voltage</td>
</tr>
<tr>
<td>Avg V1</td>
<td>V</td>
<td>Average voltage of L1-N or L1-L2 (depending on the Voltage Setup parameter setting)</td>
</tr>
<tr>
<td>Avg V2</td>
<td>V</td>
<td>Average voltage of L2-N or L2-L3 (depending on the Voltage Setup parameter setting)</td>
</tr>
<tr>
<td>Avg V3</td>
<td>V</td>
<td>Average voltage of L3-N or L3-L1 (depending on the Voltage Setup parameter setting)</td>
</tr>
<tr>
<td>V positive</td>
<td>V</td>
<td>Voltage of positive sequence</td>
</tr>
<tr>
<td>V negative</td>
<td>V</td>
<td>Voltage of negative sequence</td>
</tr>
<tr>
<td>Im1</td>
<td>A</td>
<td>Current in phase 1</td>
</tr>
<tr>
<td>Im2</td>
<td>A</td>
<td>Current in phase 2</td>
</tr>
<tr>
<td>Im3</td>
<td>A</td>
<td>Current in phase 3</td>
</tr>
<tr>
<td>Angle U1I1</td>
<td>°</td>
<td>Phase angle in phase 1</td>
</tr>
<tr>
<td>Angle U2I2</td>
<td>°</td>
<td>Phase angle in phase 2</td>
</tr>
<tr>
<td>Angle U3I3</td>
<td>°</td>
<td>Phase angle in phase 3</td>
</tr>
<tr>
<td>EarthFaultCurr</td>
<td>A</td>
<td>Earth fault current</td>
</tr>
<tr>
<td>GrndShortCurr</td>
<td>mA</td>
<td>Ground surge current from CT2 REL2 plug-in mo</td>
</tr>
</tbody>
</table>

Mains Power

<table>
<thead>
<tr>
<th>Value</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains Pwr</td>
<td>kW</td>
<td>Filtered measured mains active power</td>
</tr>
<tr>
<td>Mains Pwr Raw</td>
<td>kW</td>
<td>Measured mains active power</td>
</tr>
<tr>
<td>MP L1</td>
<td>kW</td>
<td>Active power in phase 1</td>
</tr>
<tr>
<td>MP L2</td>
<td>kW</td>
<td>Active power in phase 2</td>
</tr>
<tr>
<td>MP L3</td>
<td>kW</td>
<td>Active power in phase 3</td>
</tr>
<tr>
<td>Mains kVar</td>
<td>kVar</td>
<td>Mains reactive power</td>
</tr>
<tr>
<td>MQ L1</td>
<td>kVar</td>
<td>Reactive power in phase 1</td>
</tr>
<tr>
<td>MQ L2</td>
<td>kVar</td>
<td>Reactive power in phase 2</td>
</tr>
<tr>
<td>MQ L3</td>
<td>kVar</td>
<td>Reactive power in phase 3</td>
</tr>
<tr>
<td>MainsApparPwr</td>
<td>kVA</td>
<td>Mains apparent power</td>
</tr>
<tr>
<td>MS L1</td>
<td>kVA</td>
<td>Apparent power in phase 1</td>
</tr>
<tr>
<td>MS L2</td>
<td>kVA</td>
<td>Apparent power in phase 2</td>
</tr>
<tr>
<td>MS L3</td>
<td>kVA</td>
<td>Apparent power in phase 3</td>
</tr>
<tr>
<td>Mains PF</td>
<td>-</td>
<td>Mains power factor</td>
</tr>
<tr>
<td>MPL1</td>
<td>-</td>
<td>Power factor of phase 1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>MPfL2</td>
<td>power factor of phase 2</td>
<td></td>
</tr>
<tr>
<td>MPfL3</td>
<td>power factor of phase 3</td>
<td></td>
</tr>
<tr>
<td>Mains Ld Char</td>
<td>Mains load character</td>
<td></td>
</tr>
<tr>
<td>M Ld Char 1</td>
<td>load character of phase 1</td>
<td></td>
</tr>
<tr>
<td>M Ld Char 2</td>
<td>load character of phase 2</td>
<td></td>
</tr>
<tr>
<td>M Ld Char 3</td>
<td>load character of phase 3</td>
<td></td>
</tr>
</tbody>
</table>

LOM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Vector Shift</td>
<td>Maximal value of vector shift</td>
</tr>
<tr>
<td>Act ROCOF</td>
<td>Hertz/second actual value of Rate of Change of Frequency</td>
</tr>
<tr>
<td>Max ROCOF</td>
<td>Hertz/second Maximal value of Rate of Change of Frequency</td>
</tr>
</tbody>
</table>

NVD

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVD</td>
<td>V neutral voltage displacement</td>
</tr>
</tbody>
</table>

Sync Check

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vsc Freq</td>
<td>Hertz Measured frequency of Vsc voltage</td>
</tr>
<tr>
<td>Vsc</td>
<td>Volt Voltage between L2 and L3 on mains terminals</td>
</tr>
<tr>
<td>Slip Freq</td>
<td>Hertz Measured frequency slip between frequency of main three phase voltage and voltage on L2-L3 of the mains terminals</td>
</tr>
<tr>
<td>Angle</td>
<td>Degree Shift angle between generator and mains voltage in phase 1</td>
</tr>
</tbody>
</table>

Pole Slip

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>RPM Value of RPM evaluated from magnetic pickup</td>
</tr>
<tr>
<td>Load Angle</td>
<td>Degree Load angle</td>
</tr>
</tbody>
</table>

Controller I/O

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aux Volts</td>
<td>V Auxiliary power voltage</td>
</tr>
<tr>
<td>CU AI1</td>
<td>- Analog input 1 of controller</td>
</tr>
<tr>
<td>CU AI2</td>
<td>- Analog input 2 of controller</td>
</tr>
<tr>
<td>CU AI3</td>
<td>- Analog input 3 of controller</td>
</tr>
<tr>
<td>Bin Inputs</td>
<td>- Binary value with reading from binary input terminals on controller</td>
</tr>
<tr>
<td>Bin Outputs</td>
<td>- Binary value set on binary output terminals on controller</td>
</tr>
<tr>
<td>GSM Signal Lvl</td>
<td>% GSM signal strength</td>
</tr>
<tr>
<td>GSM Error Rate</td>
<td>- Error rate of the GSM signal</td>
</tr>
<tr>
<td>GSM Diag Code</td>
<td>- GSM diagnosis</td>
</tr>
<tr>
<td>AirGate Diag</td>
<td>- AirGate diagnosis</td>
</tr>
<tr>
<td>AirGate ID</td>
<td>- Unique number for AirGate communication</td>
</tr>
<tr>
<td>Modem Status</td>
<td>- Modem status</td>
</tr>
<tr>
<td>Remote Control</td>
<td>- Remote control</td>
</tr>
</tbody>
</table>
Extension I/O

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOM AI1</td>
<td>U4 Analog from IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>IOM AI2</td>
<td>U5 Analog from IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>IOM AI3</td>
<td>U6 Analog from IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>IOM AI4</td>
<td>U7 Analog from IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>AIO AI1</td>
<td>U8 Analog input from AIO</td>
</tr>
<tr>
<td>AIO AI2</td>
<td>U9 Analog input from AIO</td>
</tr>
<tr>
<td>AIO AI3</td>
<td>U10 Analog input from AIO</td>
</tr>
<tr>
<td>AIO AI4</td>
<td>U11 Analog input from AIO</td>
</tr>
<tr>
<td>IOM Bin Inp</td>
<td>- 8bits binary value from binary inputs of IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>Relay Card CT2</td>
<td>- Relay output</td>
</tr>
<tr>
<td>RA Bin Out</td>
<td>- 15bits binary value send to RA15 module connected via CAN</td>
</tr>
<tr>
<td>IOM Bin Out</td>
<td>- 8bits binary value send to binary outputs of IOM or PTM module connected via CAN</td>
</tr>
<tr>
<td>SharedBOut</td>
<td>- 8bits binary value contains binaries send to shared periphery</td>
</tr>
<tr>
<td>SharedAout 1</td>
<td>- Analog value sends to shared periphery</td>
</tr>
<tr>
<td>SharedAout 2</td>
<td>- Analog value sends to shared periphery</td>
</tr>
<tr>
<td>SharedAout 3</td>
<td>- Analog value sends to shared periphery</td>
</tr>
<tr>
<td>SharedAout 4</td>
<td>- Analog value sends to shared periphery</td>
</tr>
</tbody>
</table>

Statistics

<table>
<thead>
<tr>
<th>Power Type</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh I</td>
<td>kWh</td>
</tr>
<tr>
<td>kWh E</td>
<td>kWh</td>
</tr>
<tr>
<td>kVARh I</td>
<td>kVARh</td>
</tr>
<tr>
<td>kVARh E</td>
<td>kVARh</td>
</tr>
</tbody>
</table>

Date/Time

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Time</td>
</tr>
<tr>
<td>Date</td>
<td>Date</td>
</tr>
</tbody>
</table>

InteliPro Info

- Breaker State
- FW Version
- FW Branch
- IOM SW Ver.
- PasswordDecode
- CAN16
- CAN32
- Options
List of EMC tests

<table>
<thead>
<tr>
<th>Test description</th>
<th>Compliant to</th>
<th>Test conditions/ level</th>
</tr>
</thead>
</table>
| Electrical disturbance test (1MHz burst immunity) | IEC 60255-22-1 IEC 61000-4-18 IEEC C37.90.1 | f = 1MHz
U= ±0,25, ±0,5, ±1kV |
| Electrostatic discharge tests | IEC 60255-22-2 IEC 61000-4-2 | Test voltage:
U= ± 2, ±4, ±6kV contact discharge
U= ± 2, ±4, ±8kV air discharge |
| Radiated electromagnetic field immunity test | IEC 60255-22-3 IEC 61000-4-3 IEEC C37.90.2 | Field intensity: 10V/m
Scan spectrum:
80 – 1000MHz, 1,4 – 2,7GHz (80% AM 1kHz) |
| Electrical fast transient/burst immunity test | IEC 60255-22-4 IEC 61000-4-4 IEEC C37.90.1 | f = 5kHz
U= ± 2kV |
| Surge immunity tests | IEC 60255-22-5 IEC 61000-4-5 | U= ± 0,5, ± 1kV |
| Immunity to conducted disturbances induced by radio –frequency fields | IEC 60255-22-6 IEC 61000-4-6 IEEC C37.90.2 | Test voltage: U= 10V
Scan spectrum: 0,15 – 80MHz (mod.80% AM / 1kHz)
Spot frequencies: 27MHz, 68MHz |
| Power frequency magnetic field immunity tests | IEC 60255-22-8 IEC 61000-4-8 | Magnetic field intensity:
30/300 A/m |
| Voltage dips, short interruptions and voltage variations on dc input power port | IEC 60255-11 IEC 61000-4-29 | Test level: 0% Ut
Duration [ms]: 5, 10, 20, 50, 100, 200 |
| Electromagnetic emission tests | CISPR 22 IEC 60255-25 | Class A
f = 30 – 1000 MHz
f = 0,15 – 30 MHz |
| Vibration tests (sinusoidal) | IEC 60255-21-1 IEC 60068-2-6 | 2±25Hz / ±1,6mm / 1 octave per minute
25±100Hz / 4,0g / 1 octave per minute |
| Shock and bump tests | IEC 60255-21-2 EN 60068-2-27 | A=200m/s2; T=11ms; half sinus; 3 shocks in all axis both directions (18 altogether) |
| Environmental testing | IEC 60068-2-1 | Cold: -30°C |
| Environmental testing | IEC 60068-2-2 | Dry heat: +70°C |
| Environmental testing | IEC 60068-2-3 IEC 60068-2-30 | Cyclic damp heat + humidity
Temperature cycle: 20-55-20°C
Humidity: 97% |
| Isolation rated voltage | IEC 60255-5 | Overvoltage category III |
Technical data

Power supply

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply range</td>
<td>8-36VDC</td>
</tr>
<tr>
<td>Power supply drop-out immunity</td>
<td>50ms (from min. 10V)</td>
</tr>
<tr>
<td>Power consumption</td>
<td>cca 200mA/8V; 50mA/36V</td>
</tr>
<tr>
<td>Peak power consumption (LT)</td>
<td>cca 0.56A/8V; 1.8A/36V</td>
</tr>
<tr>
<td>Backup battery type</td>
<td>CR 1225</td>
</tr>
<tr>
<td>Estimated backup battery lifetime</td>
<td>10 years</td>
</tr>
</tbody>
</table>

Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>-20... 70°C</td>
</tr>
<tr>
<td>Operating temperature (LT version)</td>
<td>-40... 70°C</td>
</tr>
<tr>
<td>Operating humidity</td>
<td>95% non-condensing (IEC/EN 60068-2-30)</td>
</tr>
<tr>
<td>Protection degree (front panel)</td>
<td>IP65</td>
</tr>
<tr>
<td>Vibration</td>
<td>5-25Hz, +/- 1.6mm; 25-100Hz, a = 4g</td>
</tr>
<tr>
<td>Shocks</td>
<td>$a_{max} = 200m/s^2$</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-30... 80°C</td>
</tr>
<tr>
<td>Intended use according to UL 508 standard</td>
<td>InteliPro is intended for use with switchgear and associated equipment as per the category for Protective relays – NRGU</td>
</tr>
</tbody>
</table>

Physical dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>185x125x60mm (WxHxD)</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>Mounting cutout size</td>
<td>175x115mm (WxH)</td>
</tr>
</tbody>
</table>

Standard conformity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic compatibility</td>
<td>EN 61000-6-1, EN 61000-6-2, EN 61000-6-3, EN 61000-6-4</td>
</tr>
<tr>
<td>Low voltage directive</td>
<td>EN 61010-1-95 +A1:97</td>
</tr>
</tbody>
</table>

Binary inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of binary inputs</td>
<td>9</td>
</tr>
<tr>
<td>Galvanic insulation</td>
<td>Not insulated</td>
</tr>
<tr>
<td>Common pole</td>
<td>Positive, $V_s = 8-36$VDC</td>
</tr>
<tr>
<td>Closed contact voltage</td>
<td><2V</td>
</tr>
<tr>
<td>Open contact voltage</td>
<td>$4V - V_s$</td>
</tr>
</tbody>
</table>
Binary outputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input resistance</td>
<td>4.2 kOhm</td>
</tr>
<tr>
<td>Number of binary outputs</td>
<td>8</td>
</tr>
<tr>
<td>Galvanic insulation</td>
<td>Not insulated</td>
</tr>
<tr>
<td>Type</td>
<td>Transistor, switching to negative supply terminal</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>8-36VDC</td>
</tr>
<tr>
<td>Switching current</td>
<td>500mA (suppression diodes required for inductive loads)</td>
</tr>
</tbody>
</table>

Analog inputs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog inputs</td>
<td>3</td>
</tr>
<tr>
<td>Galvanic insulation</td>
<td>Not insulated</td>
</tr>
<tr>
<td>Electrical range</td>
<td>0-2500ohm</td>
</tr>
<tr>
<td>Resolution</td>
<td>10bits, 4digits</td>
</tr>
<tr>
<td>Supported sensor types</td>
<td>Predefined: VDO 10Bar, VDO Temperature, VDO Fuel level</td>
</tr>
<tr>
<td></td>
<td>User defined: 10 points non-linear sensors can be defined by the user</td>
</tr>
<tr>
<td>Precision</td>
<td>1% from the range</td>
</tr>
</tbody>
</table>

Mains measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement inputs</td>
<td>3ph mains voltage, 3ph mains current</td>
</tr>
<tr>
<td>Measurement type</td>
<td>True RMS</td>
</tr>
<tr>
<td>Voltage range</td>
<td>480V Ph-Ph (277V Ph-N)</td>
</tr>
<tr>
<td>Max. measured voltage</td>
<td>340V Ph-N</td>
</tr>
<tr>
<td>Voltage accuracy</td>
<td>1% of nominal voltage at 20°C and 50 or 60 Hz; 1.5% on the complete frequency and temperature range</td>
</tr>
<tr>
<td>Current range</td>
<td>5A</td>
</tr>
<tr>
<td>Max. measured current</td>
<td>9A</td>
</tr>
<tr>
<td>Max. allowed current</td>
<td>12A continuous, 50A/1s</td>
</tr>
<tr>
<td>Current accuracy</td>
<td>2% of nominal current at CT Ratio = 50A / 5A or higher</td>
</tr>
<tr>
<td>CT input burden</td>
<td><0.5VA</td>
</tr>
<tr>
<td>Frequency range</td>
<td>30-70Hz, measured from L3</td>
</tr>
<tr>
<td>Frequency accuracy</td>
<td>0.05Hz</td>
</tr>
</tbody>
</table>

CAUTION!

To assure accurate measurement of the mains current, we recommend direct metallic connection between COM terminal of Mains Current measurement and the minus "-" terminal of the unit power supply. The potential difference between those two points must not overreach 10 V.

NVD and Sync Check measurement

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement inputs</td>
<td>NVD voltage, Sync Check</td>
</tr>
<tr>
<td>Measurement type</td>
<td>True RMS</td>
</tr>
<tr>
<td>Voltage range</td>
<td>NVD: 277V</td>
</tr>
</tbody>
</table>

InteliPro, SW version 1.6, ©ComAp – November 2014
InteliPro 1.6 Comprehensive Guide
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sync Check</td>
<td>480 V</td>
</tr>
<tr>
<td>Min. measured voltage</td>
<td>Sync Check: 30 V</td>
</tr>
<tr>
<td>Max. measured voltage</td>
<td>NVD: 340 V</td>
</tr>
<tr>
<td>Voltage accuracy</td>
<td>1% of nominal voltage at 20°C and 50 or 60 Hz; 1.5% on the complete frequency and temperature range. For accurate NVD measurement it is necessary that voltage with identical frequency is connected to the Mains Voltage terminals all the time.</td>
</tr>
</tbody>
</table>

Remote communication interface

- **RS232**: Optional using the plug-in module IL-NT-RS232, D-SUB9M socket
- **RS485**: Optional using the plug-in module IL-NT-RS232-485, plug-in terminal block
- **Baud rate**: Depending on selected mode (up to 57600 bps)
- **USB**: Optional using the plug-in module IL-NT-S-USB
- **Ethernet**: Optional using the plug-in module IB-Lite

Extension modules interface

- **Type**: CAN bus
- **Galvanic insulation**: Insulated, 500V
- **Baud rate**: 250kbps
- **Bus length**: max. 200m
- **Termination resistor**: 120Ohm, built-in, jumper activated

Interface to other controllers

- **Type**: CAN bus, available in MINT type only
- **Galvanic insulation**: Insulated, 500V
- **Baud rate**: 250kbps
- **Bus length**: max. 200m
- **Termination resistor**: 120Ohm, built-in, jumper activated

Relay Card CT2-REL2

The module is delivered as a default part of the InteliPro unit.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of relay outputs</td>
<td>2</td>
</tr>
<tr>
<td>Type</td>
<td>Dry contacts</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>250 VAC</td>
</tr>
<tr>
<td>Max switched voltage/current</td>
<td>250 V / 10A</td>
</tr>
<tr>
<td>Current measurement inputs</td>
<td>2 x 1ph current measurement</td>
</tr>
<tr>
<td>Measurement type</td>
<td>True RMS</td>
</tr>
<tr>
<td>Number of current inputs</td>
<td>2</td>
</tr>
</tbody>
</table>
Input 1 (CT k1, I1):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current range</td>
<td>50 mA</td>
</tr>
<tr>
<td>Max. measured current</td>
<td>90 mA</td>
</tr>
<tr>
<td>Max. allowed current</td>
<td>120 mA</td>
</tr>
<tr>
<td>Current accuracy</td>
<td>2% of nominal current</td>
</tr>
</tbody>
</table>

Input 2 (CT k2, I2):

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current range</td>
<td>5 A</td>
</tr>
<tr>
<td>Max. measured current</td>
<td>9 A</td>
</tr>
<tr>
<td>Max. allowed current</td>
<td>12 A continuous, 50 A/1s</td>
</tr>
<tr>
<td>Current accuracy</td>
<td>2% from the range</td>
</tr>
<tr>
<td>CT input burden</td>
<td><0.5VA</td>
</tr>
</tbody>
</table>

Recommended CAN cables

- Belden 3082A DeviceBus for Allen-Bradley DeviceNet
- Belden 3083A DeviceBus for Allen-Bradley DeviceNet
- Belden 3084A DeviceBus for Allen-Bradley DeviceNet
- Belden 3085A DeviceBus for Allen-Bradley DeviceNet
- Belden 3086A DeviceBus for Honeywell SDS
- Belden 3087A DeviceBus for Honeywell SDS
- Lapp Cable Unitronic Bus DeviceNet Trunk Cable
- Lapp Cable Unitronic Bus DeviceNet Drop Cable
- Lapp Cable Unitronic Bus CAN
- Lapp Cable Unitronic-FD Bus P CAN UL/CSA